Proof of Theorem ud3lem1b
Step | Hyp | Ref
| Expression |
1 | | ud3lem0c 279 |
. . 3
(a →3 b)⊥ = (((a ∪ b⊥ ) ∩ (a ∪ b))
∩ (a⊥ ∪ (a ∩ b⊥ ))) |
2 | | ud3lem0c 279 |
. . 3
(b →3 a)⊥ = (((b ∪ a⊥ ) ∩ (b ∪ a))
∩ (b⊥ ∪ (b ∩ a⊥ ))) |
3 | 1, 2 | 2an 79 |
. 2
((a →3 b)⊥ ∩ (b →3 a)⊥ ) = ((((a ∪ b⊥ ) ∩ (a ∪ b))
∩ (a⊥ ∪ (a ∩ b⊥ ))) ∩ (((b ∪ a⊥ ) ∩ (b ∪ a))
∩ (b⊥ ∪ (b ∩ a⊥ )))) |
4 | | an32 83 |
. . 3
((((a ∪ b⊥ ) ∩ (a ∪ b))
∩ (a⊥ ∪ (a ∩ b⊥ ))) ∩ (((b ∪ a⊥ ) ∩ (b ∪ a))
∩ (b⊥ ∪ (b ∩ a⊥ )))) = ((((a ∪ b⊥ ) ∩ (a ∪ b))
∩ (((b ∪ a⊥ ) ∩ (b ∪ a))
∩ (b⊥ ∪ (b ∩ a⊥ )))) ∩ (a⊥ ∪ (a ∩ b⊥ ))) |
5 | | an32 83 |
. . . . . 6
(((a ∪ b⊥ ) ∩ (a ∪ b))
∩ (((b ∪ a⊥ ) ∩ (b ∪ a))
∩ (b⊥ ∪ (b ∩ a⊥ )))) = (((a ∪ b⊥ ) ∩ (((b ∪ a⊥ ) ∩ (b ∪ a))
∩ (b⊥ ∪ (b ∩ a⊥ )))) ∩ (a ∪ b)) |
6 | | an12 81 |
. . . . . . . . 9
((a ∪ b⊥ ) ∩ (((b ∪ a⊥ ) ∩ (b ∪ a))
∩ (b⊥ ∪ (b ∩ a⊥ )))) = (((b ∪ a⊥ ) ∩ (b ∪ a))
∩ ((a ∪ b⊥ ) ∩ (b⊥ ∪ (b ∩ a⊥ )))) |
7 | | comor2 462 |
. . . . . . . . . . . . 13
(a ∪ b⊥ ) C b⊥ |
8 | 7 | comcom7 460 |
. . . . . . . . . . . . . 14
(a ∪ b⊥ ) C b |
9 | | comor1 461 |
. . . . . . . . . . . . . . 15
(a ∪ b⊥ ) C a |
10 | 9 | comcom2 183 |
. . . . . . . . . . . . . 14
(a ∪ b⊥ ) C a⊥ |
11 | 8, 10 | com2an 484 |
. . . . . . . . . . . . 13
(a ∪ b⊥ ) C (b ∩ a⊥ ) |
12 | 7, 11 | fh1 469 |
. . . . . . . . . . . 12
((a ∪ b⊥ ) ∩ (b⊥ ∪ (b ∩ a⊥ ))) = (((a ∪ b⊥ ) ∩ b⊥ ) ∪ ((a ∪ b⊥ ) ∩ (b ∩ a⊥ ))) |
13 | | ancom 74 |
. . . . . . . . . . . . . . . 16
((a ∪ b⊥ ) ∩ b⊥ ) = (b⊥ ∩ (a ∪ b⊥ )) |
14 | | ax-a2 31 |
. . . . . . . . . . . . . . . . 17
(a ∪ b⊥ ) = (b⊥ ∪ a) |
15 | 14 | lan 77 |
. . . . . . . . . . . . . . . 16
(b⊥ ∩ (a ∪ b⊥ )) = (b⊥ ∩ (b⊥ ∪ a)) |
16 | 13, 15 | ax-r2 36 |
. . . . . . . . . . . . . . 15
((a ∪ b⊥ ) ∩ b⊥ ) = (b⊥ ∩ (b⊥ ∪ a)) |
17 | | anabs 121 |
. . . . . . . . . . . . . . 15
(b⊥ ∩ (b⊥ ∪ a)) = b⊥ |
18 | 16, 17 | ax-r2 36 |
. . . . . . . . . . . . . 14
((a ∪ b⊥ ) ∩ b⊥ ) = b⊥ |
19 | | anor1 88 |
. . . . . . . . . . . . . . . 16
(b ∩ a⊥ ) = (b⊥ ∪ a)⊥ |
20 | 14, 19 | 2an 79 |
. . . . . . . . . . . . . . 15
((a ∪ b⊥ ) ∩ (b ∩ a⊥ )) = ((b⊥ ∪ a) ∩ (b⊥ ∪ a)⊥ ) |
21 | | dff 101 |
. . . . . . . . . . . . . . . 16
0 = ((b⊥ ∪
a) ∩ (b⊥ ∪ a)⊥ ) |
22 | 21 | ax-r1 35 |
. . . . . . . . . . . . . . 15
((b⊥ ∪ a) ∩ (b⊥ ∪ a)⊥ ) = 0 |
23 | 20, 22 | ax-r2 36 |
. . . . . . . . . . . . . 14
((a ∪ b⊥ ) ∩ (b ∩ a⊥ )) = 0 |
24 | 18, 23 | 2or 72 |
. . . . . . . . . . . . 13
(((a ∪ b⊥ ) ∩ b⊥ ) ∪ ((a ∪ b⊥ ) ∩ (b ∩ a⊥ ))) = (b⊥ ∪ 0) |
25 | | or0 102 |
. . . . . . . . . . . . 13
(b⊥ ∪ 0) =
b⊥ |
26 | 24, 25 | ax-r2 36 |
. . . . . . . . . . . 12
(((a ∪ b⊥ ) ∩ b⊥ ) ∪ ((a ∪ b⊥ ) ∩ (b ∩ a⊥ ))) = b⊥ |
27 | 12, 26 | ax-r2 36 |
. . . . . . . . . . 11
((a ∪ b⊥ ) ∩ (b⊥ ∪ (b ∩ a⊥ ))) = b⊥ |
28 | 27 | lan 77 |
. . . . . . . . . 10
(((b ∪ a⊥ ) ∩ (b ∪ a))
∩ ((a ∪ b⊥ ) ∩ (b⊥ ∪ (b ∩ a⊥ )))) = (((b ∪ a⊥ ) ∩ (b ∪ a))
∩ b⊥
) |
29 | | ancom 74 |
. . . . . . . . . . 11
(((b ∪ a⊥ ) ∩ (b ∪ a))
∩ b⊥ ) = (b⊥ ∩ ((b ∪ a⊥ ) ∩ (b ∪ a))) |
30 | | anass 76 |
. . . . . . . . . . . 12
((b⊥ ∩
(b ∪ a⊥ )) ∩ (b ∪ a)) =
(b⊥ ∩ ((b ∪ a⊥ ) ∩ (b ∪ a))) |
31 | 30 | ax-r1 35 |
. . . . . . . . . . 11
(b⊥ ∩
((b ∪ a⊥ ) ∩ (b ∪ a))) =
((b⊥ ∩ (b ∪ a⊥ )) ∩ (b ∪ a)) |
32 | 29, 31 | ax-r2 36 |
. . . . . . . . . 10
(((b ∪ a⊥ ) ∩ (b ∪ a))
∩ b⊥ ) = ((b⊥ ∩ (b ∪ a⊥ )) ∩ (b ∪ a)) |
33 | 28, 32 | ax-r2 36 |
. . . . . . . . 9
(((b ∪ a⊥ ) ∩ (b ∪ a))
∩ ((a ∪ b⊥ ) ∩ (b⊥ ∪ (b ∩ a⊥ )))) = ((b⊥ ∩ (b ∪ a⊥ )) ∩ (b ∪ a)) |
34 | 6, 33 | ax-r2 36 |
. . . . . . . 8
((a ∪ b⊥ ) ∩ (((b ∪ a⊥ ) ∩ (b ∪ a))
∩ (b⊥ ∪ (b ∩ a⊥ )))) = ((b⊥ ∩ (b ∪ a⊥ )) ∩ (b ∪ a)) |
35 | 34 | ran 78 |
. . . . . . 7
(((a ∪ b⊥ ) ∩ (((b ∪ a⊥ ) ∩ (b ∪ a))
∩ (b⊥ ∪ (b ∩ a⊥ )))) ∩ (a ∪ b)) =
(((b⊥ ∩ (b ∪ a⊥ )) ∩ (b ∪ a))
∩ (a ∪ b)) |
36 | | ax-a2 31 |
. . . . . . . . 9
(a ∪ b) = (b ∪
a) |
37 | 36 | lan 77 |
. . . . . . . 8
(((b⊥ ∩
(b ∪ a⊥ )) ∩ (b ∪ a))
∩ (a ∪ b)) = (((b⊥ ∩ (b ∪ a⊥ )) ∩ (b ∪ a))
∩ (b ∪ a)) |
38 | | anass 76 |
. . . . . . . . 9
(((b⊥ ∩
(b ∪ a⊥ )) ∩ (b ∪ a))
∩ (b ∪ a)) = ((b⊥ ∩ (b ∪ a⊥ )) ∩ ((b ∪ a) ∩
(b ∪ a))) |
39 | | anidm 111 |
. . . . . . . . . . 11
((b ∪ a) ∩ (b
∪ a)) = (b ∪ a) |
40 | 39 | lan 77 |
. . . . . . . . . 10
((b⊥ ∩
(b ∪ a⊥ )) ∩ ((b ∪ a) ∩
(b ∪ a))) = ((b⊥ ∩ (b ∪ a⊥ )) ∩ (b ∪ a)) |
41 | | an32 83 |
. . . . . . . . . 10
((b⊥ ∩
(b ∪ a⊥ )) ∩ (b ∪ a)) =
((b⊥ ∩ (b ∪ a))
∩ (b ∪ a⊥ )) |
42 | 40, 41 | ax-r2 36 |
. . . . . . . . 9
((b⊥ ∩
(b ∪ a⊥ )) ∩ ((b ∪ a) ∩
(b ∪ a))) = ((b⊥ ∩ (b ∪ a))
∩ (b ∪ a⊥ )) |
43 | 38, 42 | ax-r2 36 |
. . . . . . . 8
(((b⊥ ∩
(b ∪ a⊥ )) ∩ (b ∪ a))
∩ (b ∪ a)) = ((b⊥ ∩ (b ∪ a))
∩ (b ∪ a⊥ )) |
44 | 37, 43 | ax-r2 36 |
. . . . . . 7
(((b⊥ ∩
(b ∪ a⊥ )) ∩ (b ∪ a))
∩ (a ∪ b)) = ((b⊥ ∩ (b ∪ a))
∩ (b ∪ a⊥ )) |
45 | 35, 44 | ax-r2 36 |
. . . . . 6
(((a ∪ b⊥ ) ∩ (((b ∪ a⊥ ) ∩ (b ∪ a))
∩ (b⊥ ∪ (b ∩ a⊥ )))) ∩ (a ∪ b)) =
((b⊥ ∩ (b ∪ a))
∩ (b ∪ a⊥ )) |
46 | 5, 45 | ax-r2 36 |
. . . . 5
(((a ∪ b⊥ ) ∩ (a ∪ b))
∩ (((b ∪ a⊥ ) ∩ (b ∪ a))
∩ (b⊥ ∪ (b ∩ a⊥ )))) = ((b⊥ ∩ (b ∪ a))
∩ (b ∪ a⊥ )) |
47 | 46 | ran 78 |
. . . 4
((((a ∪ b⊥ ) ∩ (a ∪ b))
∩ (((b ∪ a⊥ ) ∩ (b ∪ a))
∩ (b⊥ ∪ (b ∩ a⊥ )))) ∩ (a⊥ ∪ (a ∩ b⊥ ))) = (((b⊥ ∩ (b ∪ a))
∩ (b ∪ a⊥ )) ∩ (a⊥ ∪ (a ∩ b⊥ ))) |
48 | | anass 76 |
. . . . 5
(((b⊥ ∩
(b ∪ a)) ∩ (b
∪ a⊥ )) ∩
(a⊥ ∪ (a ∩ b⊥ ))) = ((b⊥ ∩ (b ∪ a))
∩ ((b ∪ a⊥ ) ∩ (a⊥ ∪ (a ∩ b⊥ )))) |
49 | | ax-a2 31 |
. . . . . . . . 9
(b ∪ a⊥ ) = (a⊥ ∪ b) |
50 | 49 | ran 78 |
. . . . . . . 8
((b ∪ a⊥ ) ∩ (a⊥ ∪ (a ∩ b⊥ ))) = ((a⊥ ∪ b) ∩ (a⊥ ∪ (a ∩ b⊥ ))) |
51 | | ancom 74 |
. . . . . . . . 9
((a⊥ ∪ b) ∩ (a⊥ ∪ (a ∩ b⊥ ))) = ((a⊥ ∪ (a ∩ b⊥ )) ∩ (a⊥ ∪ b)) |
52 | | comor1 461 |
. . . . . . . . . . 11
(a⊥ ∪ b) C a⊥ |
53 | 52 | comcom7 460 |
. . . . . . . . . . . 12
(a⊥ ∪ b) C a |
54 | | comor2 462 |
. . . . . . . . . . . . 13
(a⊥ ∪ b) C b |
55 | 54 | comcom2 183 |
. . . . . . . . . . . 12
(a⊥ ∪ b) C b⊥ |
56 | 53, 55 | com2an 484 |
. . . . . . . . . . 11
(a⊥ ∪ b) C (a
∩ b⊥
) |
57 | 52, 56 | fh1r 473 |
. . . . . . . . . 10
((a⊥ ∪
(a ∩ b⊥ )) ∩ (a⊥ ∪ b)) = ((a⊥ ∩ (a⊥ ∪ b)) ∪ ((a
∩ b⊥ ) ∩ (a⊥ ∪ b))) |
58 | | anabs 121 |
. . . . . . . . . . . 12
(a⊥ ∩ (a⊥ ∪ b)) = a⊥ |
59 | | ancom 74 |
. . . . . . . . . . . . 13
((a ∩ b⊥ ) ∩ (a⊥ ∪ b)) = ((a⊥ ∪ b) ∩ (a
∩ b⊥
)) |
60 | | anor1 88 |
. . . . . . . . . . . . . . 15
(a ∩ b⊥ ) = (a⊥ ∪ b)⊥ |
61 | 60 | lan 77 |
. . . . . . . . . . . . . 14
((a⊥ ∪ b) ∩ (a
∩ b⊥ )) = ((a⊥ ∪ b) ∩ (a⊥ ∪ b)⊥ ) |
62 | | dff 101 |
. . . . . . . . . . . . . . 15
0 = ((a⊥ ∪
b) ∩ (a⊥ ∪ b)⊥ ) |
63 | 62 | ax-r1 35 |
. . . . . . . . . . . . . 14
((a⊥ ∪ b) ∩ (a⊥ ∪ b)⊥ ) = 0 |
64 | 61, 63 | ax-r2 36 |
. . . . . . . . . . . . 13
((a⊥ ∪ b) ∩ (a
∩ b⊥ )) =
0 |
65 | 59, 64 | ax-r2 36 |
. . . . . . . . . . . 12
((a ∩ b⊥ ) ∩ (a⊥ ∪ b)) = 0 |
66 | 58, 65 | 2or 72 |
. . . . . . . . . . 11
((a⊥ ∩
(a⊥ ∪ b)) ∪ ((a
∩ b⊥ ) ∩ (a⊥ ∪ b))) = (a⊥ ∪ 0) |
67 | | or0 102 |
. . . . . . . . . . 11
(a⊥ ∪ 0) =
a⊥ |
68 | 66, 67 | ax-r2 36 |
. . . . . . . . . 10
((a⊥ ∩
(a⊥ ∪ b)) ∪ ((a
∩ b⊥ ) ∩ (a⊥ ∪ b))) = a⊥ |
69 | 57, 68 | ax-r2 36 |
. . . . . . . . 9
((a⊥ ∪
(a ∩ b⊥ )) ∩ (a⊥ ∪ b)) = a⊥ |
70 | 51, 69 | ax-r2 36 |
. . . . . . . 8
((a⊥ ∪ b) ∩ (a⊥ ∪ (a ∩ b⊥ ))) = a⊥ |
71 | 50, 70 | ax-r2 36 |
. . . . . . 7
((b ∪ a⊥ ) ∩ (a⊥ ∪ (a ∩ b⊥ ))) = a⊥ |
72 | 71 | lan 77 |
. . . . . 6
((b⊥ ∩
(b ∪ a)) ∩ ((b
∪ a⊥ ) ∩ (a⊥ ∪ (a ∩ b⊥ )))) = ((b⊥ ∩ (b ∪ a))
∩ a⊥
) |
73 | | an32 83 |
. . . . . . 7
((b⊥ ∩
(b ∪ a)) ∩ a⊥ ) = ((b⊥ ∩ a⊥ ) ∩ (b ∪ a)) |
74 | | oran 87 |
. . . . . . . . 9
(b ∪ a) = (b⊥ ∩ a⊥
)⊥ |
75 | 74 | lan 77 |
. . . . . . . 8
((b⊥ ∩ a⊥ ) ∩ (b ∪ a)) =
((b⊥ ∩ a⊥ ) ∩ (b⊥ ∩ a⊥ )⊥
) |
76 | | dff 101 |
. . . . . . . . 9
0 = ((b⊥ ∩
a⊥ ) ∩ (b⊥ ∩ a⊥ )⊥
) |
77 | 76 | ax-r1 35 |
. . . . . . . 8
((b⊥ ∩ a⊥ ) ∩ (b⊥ ∩ a⊥ )⊥ ) =
0 |
78 | 75, 77 | ax-r2 36 |
. . . . . . 7
((b⊥ ∩ a⊥ ) ∩ (b ∪ a)) =
0 |
79 | 73, 78 | ax-r2 36 |
. . . . . 6
((b⊥ ∩
(b ∪ a)) ∩ a⊥ ) = 0 |
80 | 72, 79 | ax-r2 36 |
. . . . 5
((b⊥ ∩
(b ∪ a)) ∩ ((b
∪ a⊥ ) ∩ (a⊥ ∪ (a ∩ b⊥ )))) = 0 |
81 | 48, 80 | ax-r2 36 |
. . . 4
(((b⊥ ∩
(b ∪ a)) ∩ (b
∪ a⊥ )) ∩
(a⊥ ∪ (a ∩ b⊥ ))) = 0 |
82 | 47, 81 | ax-r2 36 |
. . 3
((((a ∪ b⊥ ) ∩ (a ∪ b))
∩ (((b ∪ a⊥ ) ∩ (b ∪ a))
∩ (b⊥ ∪ (b ∩ a⊥ )))) ∩ (a⊥ ∪ (a ∩ b⊥ ))) = 0 |
83 | 4, 82 | ax-r2 36 |
. 2
((((a ∪ b⊥ ) ∩ (a ∪ b))
∩ (a⊥ ∪ (a ∩ b⊥ ))) ∩ (((b ∪ a⊥ ) ∩ (b ∪ a))
∩ (b⊥ ∪ (b ∩ a⊥ )))) = 0 |
84 | 3, 83 | ax-r2 36 |
1
((a →3 b)⊥ ∩ (b →3 a)⊥ ) = 0 |