Proof of Theorem ud3lem1a
| Step | Hyp | Ref
| Expression |
| 1 | | ud3lem0c 279 |
. . 3
(a →3 b)⊥ = (((a ∪ b⊥ ) ∩ (a ∪ b))
∩ (a⊥ ∪ (a ∩ b⊥ ))) |
| 2 | | df-i3 46 |
. . 3
(b →3 a) = (((b⊥ ∩ a) ∪ (b⊥ ∩ a⊥ )) ∪ (b ∩ (b⊥ ∪ a))) |
| 3 | 1, 2 | 2an 79 |
. 2
((a →3 b)⊥ ∩ (b →3 a)) = ((((a
∪ b⊥ ) ∩ (a ∪ b))
∩ (a⊥ ∪ (a ∩ b⊥ ))) ∩ (((b⊥ ∩ a) ∪ (b⊥ ∩ a⊥ )) ∪ (b ∩ (b⊥ ∪ a)))) |
| 4 | | comor2 462 |
. . . . . . . . 9
(a ∪ b⊥ ) C b⊥ |
| 5 | | comor1 461 |
. . . . . . . . 9
(a ∪ b⊥ ) C a |
| 6 | 4, 5 | com2an 484 |
. . . . . . . 8
(a ∪ b⊥ ) C (b⊥ ∩ a) |
| 7 | 5 | comcom2 183 |
. . . . . . . . 9
(a ∪ b⊥ ) C a⊥ |
| 8 | 4, 7 | com2an 484 |
. . . . . . . 8
(a ∪ b⊥ ) C (b⊥ ∩ a⊥ ) |
| 9 | 6, 8 | com2or 483 |
. . . . . . 7
(a ∪ b⊥ ) C ((b⊥ ∩ a) ∪ (b⊥ ∩ a⊥ )) |
| 10 | 9 | comcom 453 |
. . . . . 6
((b⊥ ∩ a) ∪ (b⊥ ∩ a⊥ )) C (a ∪ b⊥ ) |
| 11 | | comor2 462 |
. . . . . . . . . 10
(a ∪ b) C b |
| 12 | 11 | comcom2 183 |
. . . . . . . . 9
(a ∪ b) C b⊥ |
| 13 | | comor1 461 |
. . . . . . . . 9
(a ∪ b) C a |
| 14 | 12, 13 | com2an 484 |
. . . . . . . 8
(a ∪ b) C (b⊥ ∩ a) |
| 15 | 13 | comcom2 183 |
. . . . . . . . 9
(a ∪ b) C a⊥ |
| 16 | 12, 15 | com2an 484 |
. . . . . . . 8
(a ∪ b) C (b⊥ ∩ a⊥ ) |
| 17 | 14, 16 | com2or 483 |
. . . . . . 7
(a ∪ b) C ((b⊥ ∩ a) ∪ (b⊥ ∩ a⊥ )) |
| 18 | 17 | comcom 453 |
. . . . . 6
((b⊥ ∩ a) ∪ (b⊥ ∩ a⊥ )) C (a ∪ b) |
| 19 | 10, 18 | com2an 484 |
. . . . 5
((b⊥ ∩ a) ∪ (b⊥ ∩ a⊥ )) C ((a ∪ b⊥ ) ∩ (a ∪ b)) |
| 20 | | comanr2 465 |
. . . . . . . . 9
a C (b⊥ ∩ a) |
| 21 | 20 | comcom3 454 |
. . . . . . . 8
a⊥ C
(b⊥ ∩ a) |
| 22 | | comanr2 465 |
. . . . . . . 8
a⊥ C
(b⊥ ∩ a⊥ ) |
| 23 | 21, 22 | com2or 483 |
. . . . . . 7
a⊥ C
((b⊥ ∩ a) ∪ (b⊥ ∩ a⊥ )) |
| 24 | 23 | comcom 453 |
. . . . . 6
((b⊥ ∩ a) ∪ (b⊥ ∩ a⊥ )) C a⊥ |
| 25 | | coman2 186 |
. . . . . . . . 9
(a ∩ b⊥ ) C b⊥ |
| 26 | | coman1 185 |
. . . . . . . . 9
(a ∩ b⊥ ) C a |
| 27 | 25, 26 | com2an 484 |
. . . . . . . 8
(a ∩ b⊥ ) C (b⊥ ∩ a) |
| 28 | 26 | comcom2 183 |
. . . . . . . . 9
(a ∩ b⊥ ) C a⊥ |
| 29 | 25, 28 | com2an 484 |
. . . . . . . 8
(a ∩ b⊥ ) C (b⊥ ∩ a⊥ ) |
| 30 | 27, 29 | com2or 483 |
. . . . . . 7
(a ∩ b⊥ ) C ((b⊥ ∩ a) ∪ (b⊥ ∩ a⊥ )) |
| 31 | 30 | comcom 453 |
. . . . . 6
((b⊥ ∩ a) ∪ (b⊥ ∩ a⊥ )) C (a ∩ b⊥ ) |
| 32 | 24, 31 | com2or 483 |
. . . . 5
((b⊥ ∩ a) ∪ (b⊥ ∩ a⊥ )) C (a⊥ ∪ (a ∩ b⊥ )) |
| 33 | 19, 32 | com2an 484 |
. . . 4
((b⊥ ∩ a) ∪ (b⊥ ∩ a⊥ )) C (((a ∪ b⊥ ) ∩ (a ∪ b))
∩ (a⊥ ∪ (a ∩ b⊥ ))) |
| 34 | | comanr1 464 |
. . . . . . . 8
b⊥ C
(b⊥ ∩ a) |
| 35 | 34 | comcom6 459 |
. . . . . . 7
b C (b⊥ ∩ a) |
| 36 | | comanr1 464 |
. . . . . . . 8
b⊥ C
(b⊥ ∩ a⊥ ) |
| 37 | 36 | comcom6 459 |
. . . . . . 7
b C (b⊥ ∩ a⊥ ) |
| 38 | 35, 37 | com2or 483 |
. . . . . 6
b C ((b⊥ ∩ a) ∪ (b⊥ ∩ a⊥ )) |
| 39 | 38 | comcom 453 |
. . . . 5
((b⊥ ∩ a) ∪ (b⊥ ∩ a⊥ )) C b |
| 40 | | comor1 461 |
. . . . . . . 8
(b⊥ ∪ a) C b⊥ |
| 41 | | comor2 462 |
. . . . . . . 8
(b⊥ ∪ a) C a |
| 42 | 40, 41 | com2an 484 |
. . . . . . 7
(b⊥ ∪ a) C (b⊥ ∩ a) |
| 43 | 41 | comcom2 183 |
. . . . . . . 8
(b⊥ ∪ a) C a⊥ |
| 44 | 40, 43 | com2an 484 |
. . . . . . 7
(b⊥ ∪ a) C (b⊥ ∩ a⊥ ) |
| 45 | 42, 44 | com2or 483 |
. . . . . 6
(b⊥ ∪ a) C ((b⊥ ∩ a) ∪ (b⊥ ∩ a⊥ )) |
| 46 | 45 | comcom 453 |
. . . . 5
((b⊥ ∩ a) ∪ (b⊥ ∩ a⊥ )) C (b⊥ ∪ a) |
| 47 | 39, 46 | com2an 484 |
. . . 4
((b⊥ ∩ a) ∪ (b⊥ ∩ a⊥ )) C (b ∩ (b⊥ ∪ a)) |
| 48 | 33, 47 | fh2 470 |
. . 3
((((a ∪ b⊥ ) ∩ (a ∪ b))
∩ (a⊥ ∪ (a ∩ b⊥ ))) ∩ (((b⊥ ∩ a) ∪ (b⊥ ∩ a⊥ )) ∪ (b ∩ (b⊥ ∪ a)))) = (((((a
∪ b⊥ ) ∩ (a ∪ b))
∩ (a⊥ ∪ (a ∩ b⊥ ))) ∩ ((b⊥ ∩ a) ∪ (b⊥ ∩ a⊥ ))) ∪ ((((a ∪ b⊥ ) ∩ (a ∪ b))
∩ (a⊥ ∪ (a ∩ b⊥ ))) ∩ (b ∩ (b⊥ ∪ a)))) |
| 49 | | coman2 186 |
. . . . . . . . . 10
(b⊥ ∩ a) C a |
| 50 | | coman1 185 |
. . . . . . . . . 10
(b⊥ ∩ a) C b⊥ |
| 51 | 49, 50 | com2or 483 |
. . . . . . . . 9
(b⊥ ∩ a) C (a
∪ b⊥
) |
| 52 | 50 | comcom7 460 |
. . . . . . . . . 10
(b⊥ ∩ a) C b |
| 53 | 49, 52 | com2or 483 |
. . . . . . . . 9
(b⊥ ∩ a) C (a
∪ b) |
| 54 | 51, 53 | com2an 484 |
. . . . . . . 8
(b⊥ ∩ a) C ((a
∪ b⊥ ) ∩ (a ∪ b)) |
| 55 | 49 | comcom2 183 |
. . . . . . . . 9
(b⊥ ∩ a) C a⊥ |
| 56 | 49, 50 | com2an 484 |
. . . . . . . . 9
(b⊥ ∩ a) C (a
∩ b⊥
) |
| 57 | 55, 56 | com2or 483 |
. . . . . . . 8
(b⊥ ∩ a) C (a⊥ ∪ (a ∩ b⊥ )) |
| 58 | 54, 57 | com2an 484 |
. . . . . . 7
(b⊥ ∩ a) C (((a
∪ b⊥ ) ∩ (a ∪ b))
∩ (a⊥ ∪ (a ∩ b⊥ ))) |
| 59 | 50, 55 | com2an 484 |
. . . . . . 7
(b⊥ ∩ a) C (b⊥ ∩ a⊥ ) |
| 60 | 58, 59 | fh2 470 |
. . . . . 6
((((a ∪ b⊥ ) ∩ (a ∪ b))
∩ (a⊥ ∪ (a ∩ b⊥ ))) ∩ ((b⊥ ∩ a) ∪ (b⊥ ∩ a⊥ ))) = (((((a ∪ b⊥ ) ∩ (a ∪ b))
∩ (a⊥ ∪ (a ∩ b⊥ ))) ∩ (b⊥ ∩ a)) ∪ ((((a
∪ b⊥ ) ∩ (a ∪ b))
∩ (a⊥ ∪ (a ∩ b⊥ ))) ∩ (b⊥ ∩ a⊥ ))) |
| 61 | | anass 76 |
. . . . . . . . 9
((((a ∪ b⊥ ) ∩ (a ∪ b))
∩ (a⊥ ∪ (a ∩ b⊥ ))) ∩ (b⊥ ∩ a)) = (((a ∪
b⊥ ) ∩ (a ∪ b))
∩ ((a⊥ ∪ (a ∩ b⊥ )) ∩ (b⊥ ∩ a))) |
| 62 | | ancom 74 |
. . . . . . . . . . . 12
((a⊥ ∪
(a ∩ b⊥ )) ∩ (b⊥ ∩ a)) = ((b⊥ ∩ a) ∩ (a⊥ ∪ (a ∩ b⊥ ))) |
| 63 | | ancom 74 |
. . . . . . . . . . . . . 14
(b⊥ ∩ a) = (a ∩
b⊥ ) |
| 64 | | ax-a2 31 |
. . . . . . . . . . . . . 14
(a⊥ ∪ (a ∩ b⊥ )) = ((a ∩ b⊥ ) ∪ a⊥ ) |
| 65 | 63, 64 | 2an 79 |
. . . . . . . . . . . . 13
((b⊥ ∩ a) ∩ (a⊥ ∪ (a ∩ b⊥ ))) = ((a ∩ b⊥ ) ∩ ((a ∩ b⊥ ) ∪ a⊥ )) |
| 66 | | anabs 121 |
. . . . . . . . . . . . 13
((a ∩ b⊥ ) ∩ ((a ∩ b⊥ ) ∪ a⊥ )) = (a ∩ b⊥ ) |
| 67 | 65, 66 | ax-r2 36 |
. . . . . . . . . . . 12
((b⊥ ∩ a) ∩ (a⊥ ∪ (a ∩ b⊥ ))) = (a ∩ b⊥ ) |
| 68 | 62, 67 | ax-r2 36 |
. . . . . . . . . . 11
((a⊥ ∪
(a ∩ b⊥ )) ∩ (b⊥ ∩ a)) = (a ∩
b⊥ ) |
| 69 | 68 | lan 77 |
. . . . . . . . . 10
(((a ∪ b⊥ ) ∩ (a ∪ b))
∩ ((a⊥ ∪ (a ∩ b⊥ )) ∩ (b⊥ ∩ a))) = (((a
∪ b⊥ ) ∩ (a ∪ b))
∩ (a ∩ b⊥ )) |
| 70 | | ancom 74 |
. . . . . . . . . . 11
(((a ∪ b⊥ ) ∩ (a ∪ b))
∩ (a ∩ b⊥ )) = ((a ∩ b⊥ ) ∩ ((a ∪ b⊥ ) ∩ (a ∪ b))) |
| 71 | | lea 160 |
. . . . . . . . . . . . 13
(a ∩ b⊥ ) ≤ a |
| 72 | | leo 158 |
. . . . . . . . . . . . . 14
a ≤ (a ∪ b⊥ ) |
| 73 | | leo 158 |
. . . . . . . . . . . . . 14
a ≤ (a ∪ b) |
| 74 | 72, 73 | ler2an 173 |
. . . . . . . . . . . . 13
a ≤ ((a ∪ b⊥ ) ∩ (a ∪ b)) |
| 75 | 71, 74 | letr 137 |
. . . . . . . . . . . 12
(a ∩ b⊥ ) ≤ ((a ∪ b⊥ ) ∩ (a ∪ b)) |
| 76 | 75 | df2le2 136 |
. . . . . . . . . . 11
((a ∩ b⊥ ) ∩ ((a ∪ b⊥ ) ∩ (a ∪ b))) =
(a ∩ b⊥ ) |
| 77 | 70, 76 | ax-r2 36 |
. . . . . . . . . 10
(((a ∪ b⊥ ) ∩ (a ∪ b))
∩ (a ∩ b⊥ )) = (a ∩ b⊥ ) |
| 78 | 69, 77 | ax-r2 36 |
. . . . . . . . 9
(((a ∪ b⊥ ) ∩ (a ∪ b))
∩ ((a⊥ ∪ (a ∩ b⊥ )) ∩ (b⊥ ∩ a))) = (a ∩
b⊥ ) |
| 79 | 61, 78 | ax-r2 36 |
. . . . . . . 8
((((a ∪ b⊥ ) ∩ (a ∪ b))
∩ (a⊥ ∪ (a ∩ b⊥ ))) ∩ (b⊥ ∩ a)) = (a ∩
b⊥ ) |
| 80 | | an32 83 |
. . . . . . . . 9
((((a ∪ b⊥ ) ∩ (a ∪ b))
∩ (a⊥ ∪ (a ∩ b⊥ ))) ∩ (b⊥ ∩ a⊥ )) = ((((a ∪ b⊥ ) ∩ (a ∪ b))
∩ (b⊥ ∩ a⊥ )) ∩ (a⊥ ∪ (a ∩ b⊥ ))) |
| 81 | | anass 76 |
. . . . . . . . . . . 12
(((a ∪ b⊥ ) ∩ (a ∪ b))
∩ (b⊥ ∩ a⊥ )) = ((a ∪ b⊥ ) ∩ ((a ∪ b) ∩
(b⊥ ∩ a⊥ ))) |
| 82 | | ax-a2 31 |
. . . . . . . . . . . . . . . 16
(a ∪ b) = (b ∪
a) |
| 83 | | oran 87 |
. . . . . . . . . . . . . . . . . 18
(b ∪ a) = (b⊥ ∩ a⊥
)⊥ |
| 84 | 83 | ax-r1 35 |
. . . . . . . . . . . . . . . . 17
(b⊥ ∩ a⊥ )⊥ = (b ∪ a) |
| 85 | 84 | con3 68 |
. . . . . . . . . . . . . . . 16
(b⊥ ∩ a⊥ ) = (b ∪ a)⊥ |
| 86 | 82, 85 | 2an 79 |
. . . . . . . . . . . . . . 15
((a ∪ b) ∩ (b⊥ ∩ a⊥ )) = ((b ∪ a) ∩
(b ∪ a)⊥ ) |
| 87 | | dff 101 |
. . . . . . . . . . . . . . . 16
0 = ((b ∪ a) ∩ (b
∪ a)⊥
) |
| 88 | 87 | ax-r1 35 |
. . . . . . . . . . . . . . 15
((b ∪ a) ∩ (b
∪ a)⊥ ) =
0 |
| 89 | 86, 88 | ax-r2 36 |
. . . . . . . . . . . . . 14
((a ∪ b) ∩ (b⊥ ∩ a⊥ )) = 0 |
| 90 | 89 | lan 77 |
. . . . . . . . . . . . 13
((a ∪ b⊥ ) ∩ ((a ∪ b) ∩
(b⊥ ∩ a⊥ ))) = ((a ∪ b⊥ ) ∩ 0) |
| 91 | | an0 108 |
. . . . . . . . . . . . 13
((a ∪ b⊥ ) ∩ 0) = 0 |
| 92 | 90, 91 | ax-r2 36 |
. . . . . . . . . . . 12
((a ∪ b⊥ ) ∩ ((a ∪ b) ∩
(b⊥ ∩ a⊥ ))) = 0 |
| 93 | 81, 92 | ax-r2 36 |
. . . . . . . . . . 11
(((a ∪ b⊥ ) ∩ (a ∪ b))
∩ (b⊥ ∩ a⊥ )) = 0 |
| 94 | 93 | ran 78 |
. . . . . . . . . 10
((((a ∪ b⊥ ) ∩ (a ∪ b))
∩ (b⊥ ∩ a⊥ )) ∩ (a⊥ ∪ (a ∩ b⊥ ))) = (0 ∩ (a⊥ ∪ (a ∩ b⊥ ))) |
| 95 | | an0r 109 |
. . . . . . . . . 10
(0 ∩ (a⊥ ∪
(a ∩ b⊥ ))) = 0 |
| 96 | 94, 95 | ax-r2 36 |
. . . . . . . . 9
((((a ∪ b⊥ ) ∩ (a ∪ b))
∩ (b⊥ ∩ a⊥ )) ∩ (a⊥ ∪ (a ∩ b⊥ ))) = 0 |
| 97 | 80, 96 | ax-r2 36 |
. . . . . . . 8
((((a ∪ b⊥ ) ∩ (a ∪ b))
∩ (a⊥ ∪ (a ∩ b⊥ ))) ∩ (b⊥ ∩ a⊥ )) = 0 |
| 98 | 79, 97 | 2or 72 |
. . . . . . 7
(((((a ∪ b⊥ ) ∩ (a ∪ b))
∩ (a⊥ ∪ (a ∩ b⊥ ))) ∩ (b⊥ ∩ a)) ∪ ((((a
∪ b⊥ ) ∩ (a ∪ b))
∩ (a⊥ ∪ (a ∩ b⊥ ))) ∩ (b⊥ ∩ a⊥ ))) = ((a ∩ b⊥ ) ∪ 0) |
| 99 | | or0 102 |
. . . . . . 7
((a ∩ b⊥ ) ∪ 0) = (a ∩ b⊥ ) |
| 100 | 98, 99 | ax-r2 36 |
. . . . . 6
(((((a ∪ b⊥ ) ∩ (a ∪ b))
∩ (a⊥ ∪ (a ∩ b⊥ ))) ∩ (b⊥ ∩ a)) ∪ ((((a
∪ b⊥ ) ∩ (a ∪ b))
∩ (a⊥ ∪ (a ∩ b⊥ ))) ∩ (b⊥ ∩ a⊥ ))) = (a ∩ b⊥ ) |
| 101 | 60, 100 | ax-r2 36 |
. . . . 5
((((a ∪ b⊥ ) ∩ (a ∪ b))
∩ (a⊥ ∪ (a ∩ b⊥ ))) ∩ ((b⊥ ∩ a) ∪ (b⊥ ∩ a⊥ ))) = (a ∩ b⊥ ) |
| 102 | | anass 76 |
. . . . . 6
((((a ∪ b⊥ ) ∩ (a ∪ b))
∩ (a⊥ ∪ (a ∩ b⊥ ))) ∩ (b ∩ (b⊥ ∪ a))) = (((a
∪ b⊥ ) ∩ (a ∪ b))
∩ ((a⊥ ∪ (a ∩ b⊥ )) ∩ (b ∩ (b⊥ ∪ a)))) |
| 103 | | anass 76 |
. . . . . . . . . 10
(((a⊥ ∪
(a ∩ b⊥ )) ∩ b) ∩ (b⊥ ∪ a)) = ((a⊥ ∪ (a ∩ b⊥ )) ∩ (b ∩ (b⊥ ∪ a))) |
| 104 | 103 | ax-r1 35 |
. . . . . . . . 9
((a⊥ ∪
(a ∩ b⊥ )) ∩ (b ∩ (b⊥ ∪ a))) = (((a⊥ ∪ (a ∩ b⊥ )) ∩ b) ∩ (b⊥ ∪ a)) |
| 105 | 64 | ran 78 |
. . . . . . . . . . . 12
((a⊥ ∪
(a ∩ b⊥ )) ∩ b) = (((a ∩
b⊥ ) ∪ a⊥ ) ∩ b) |
| 106 | 25 | comcom7 460 |
. . . . . . . . . . . . . 14
(a ∩ b⊥ ) C b |
| 107 | 106, 28 | fh2r 474 |
. . . . . . . . . . . . 13
(((a ∩ b⊥ ) ∪ a⊥ ) ∩ b) = (((a ∩
b⊥ ) ∩ b) ∪ (a⊥ ∩ b)) |
| 108 | | anass 76 |
. . . . . . . . . . . . . . . 16
((a ∩ b⊥ ) ∩ b) = (a ∩
(b⊥ ∩ b)) |
| 109 | | ancom 74 |
. . . . . . . . . . . . . . . . . . 19
(b⊥ ∩ b) = (b ∩
b⊥ ) |
| 110 | | dff 101 |
. . . . . . . . . . . . . . . . . . . 20
0 = (b ∩ b⊥ ) |
| 111 | 110 | ax-r1 35 |
. . . . . . . . . . . . . . . . . . 19
(b ∩ b⊥ ) = 0 |
| 112 | 109, 111 | ax-r2 36 |
. . . . . . . . . . . . . . . . . 18
(b⊥ ∩ b) = 0 |
| 113 | 112 | lan 77 |
. . . . . . . . . . . . . . . . 17
(a ∩ (b⊥ ∩ b)) = (a ∩
0) |
| 114 | | an0 108 |
. . . . . . . . . . . . . . . . 17
(a ∩ 0) = 0 |
| 115 | 113, 114 | ax-r2 36 |
. . . . . . . . . . . . . . . 16
(a ∩ (b⊥ ∩ b)) = 0 |
| 116 | 108, 115 | ax-r2 36 |
. . . . . . . . . . . . . . 15
((a ∩ b⊥ ) ∩ b) = 0 |
| 117 | | ancom 74 |
. . . . . . . . . . . . . . 15
(a⊥ ∩ b) = (b ∩
a⊥ ) |
| 118 | 116, 117 | 2or 72 |
. . . . . . . . . . . . . 14
(((a ∩ b⊥ ) ∩ b) ∪ (a⊥ ∩ b)) = (0 ∪ (b ∩ a⊥ )) |
| 119 | | or0r 103 |
. . . . . . . . . . . . . 14
(0 ∪ (b ∩ a⊥ )) = (b ∩ a⊥ ) |
| 120 | 118, 119 | ax-r2 36 |
. . . . . . . . . . . . 13
(((a ∩ b⊥ ) ∩ b) ∪ (a⊥ ∩ b)) = (b ∩
a⊥ ) |
| 121 | 107, 120 | ax-r2 36 |
. . . . . . . . . . . 12
(((a ∩ b⊥ ) ∪ a⊥ ) ∩ b) = (b ∩
a⊥ ) |
| 122 | 105, 121 | ax-r2 36 |
. . . . . . . . . . 11
((a⊥ ∪
(a ∩ b⊥ )) ∩ b) = (b ∩
a⊥ ) |
| 123 | 122 | ran 78 |
. . . . . . . . . 10
(((a⊥ ∪
(a ∩ b⊥ )) ∩ b) ∩ (b⊥ ∪ a)) = ((b ∩
a⊥ ) ∩ (b⊥ ∪ a)) |
| 124 | | anor1 88 |
. . . . . . . . . . . . . 14
(b ∩ a⊥ ) = (b⊥ ∪ a)⊥ |
| 125 | 124 | ax-r1 35 |
. . . . . . . . . . . . 13
(b⊥ ∪ a)⊥ = (b ∩ a⊥ ) |
| 126 | 125 | con3 68 |
. . . . . . . . . . . 12
(b⊥ ∪ a) = (b ∩
a⊥
)⊥ |
| 127 | 126 | lan 77 |
. . . . . . . . . . 11
((b ∩ a⊥ ) ∩ (b⊥ ∪ a)) = ((b ∩
a⊥ ) ∩ (b ∩ a⊥ )⊥
) |
| 128 | | dff 101 |
. . . . . . . . . . . 12
0 = ((b ∩ a⊥ ) ∩ (b ∩ a⊥ )⊥
) |
| 129 | 128 | ax-r1 35 |
. . . . . . . . . . 11
((b ∩ a⊥ ) ∩ (b ∩ a⊥ )⊥ ) =
0 |
| 130 | 127, 129 | ax-r2 36 |
. . . . . . . . . 10
((b ∩ a⊥ ) ∩ (b⊥ ∪ a)) = 0 |
| 131 | 123, 130 | ax-r2 36 |
. . . . . . . . 9
(((a⊥ ∪
(a ∩ b⊥ )) ∩ b) ∩ (b⊥ ∪ a)) = 0 |
| 132 | 104, 131 | ax-r2 36 |
. . . . . . . 8
((a⊥ ∪
(a ∩ b⊥ )) ∩ (b ∩ (b⊥ ∪ a))) = 0 |
| 133 | 132 | lan 77 |
. . . . . . 7
(((a ∪ b⊥ ) ∩ (a ∪ b))
∩ ((a⊥ ∪ (a ∩ b⊥ )) ∩ (b ∩ (b⊥ ∪ a)))) = (((a
∪ b⊥ ) ∩ (a ∪ b))
∩ 0) |
| 134 | | an0 108 |
. . . . . . 7
(((a ∪ b⊥ ) ∩ (a ∪ b))
∩ 0) = 0 |
| 135 | 133, 134 | ax-r2 36 |
. . . . . 6
(((a ∪ b⊥ ) ∩ (a ∪ b))
∩ ((a⊥ ∪ (a ∩ b⊥ )) ∩ (b ∩ (b⊥ ∪ a)))) = 0 |
| 136 | 102, 135 | ax-r2 36 |
. . . . 5
((((a ∪ b⊥ ) ∩ (a ∪ b))
∩ (a⊥ ∪ (a ∩ b⊥ ))) ∩ (b ∩ (b⊥ ∪ a))) = 0 |
| 137 | 101, 136 | 2or 72 |
. . . 4
(((((a ∪ b⊥ ) ∩ (a ∪ b))
∩ (a⊥ ∪ (a ∩ b⊥ ))) ∩ ((b⊥ ∩ a) ∪ (b⊥ ∩ a⊥ ))) ∪ ((((a ∪ b⊥ ) ∩ (a ∪ b))
∩ (a⊥ ∪ (a ∩ b⊥ ))) ∩ (b ∩ (b⊥ ∪ a)))) = ((a
∩ b⊥ ) ∪
0) |
| 138 | 137, 99 | ax-r2 36 |
. . 3
(((((a ∪ b⊥ ) ∩ (a ∪ b))
∩ (a⊥ ∪ (a ∩ b⊥ ))) ∩ ((b⊥ ∩ a) ∪ (b⊥ ∩ a⊥ ))) ∪ ((((a ∪ b⊥ ) ∩ (a ∪ b))
∩ (a⊥ ∪ (a ∩ b⊥ ))) ∩ (b ∩ (b⊥ ∪ a)))) = (a ∩
b⊥ ) |
| 139 | 48, 138 | ax-r2 36 |
. 2
((((a ∪ b⊥ ) ∩ (a ∪ b))
∩ (a⊥ ∪ (a ∩ b⊥ ))) ∩ (((b⊥ ∩ a) ∪ (b⊥ ∩ a⊥ )) ∪ (b ∩ (b⊥ ∪ a)))) = (a ∩
b⊥ ) |
| 140 | 3, 139 | ax-r2 36 |
1
((a →3 b)⊥ ∩ (b →3 a)) = (a ∩
b⊥ ) |