ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  efcj Unicode version

Theorem efcj 11379
Description: The exponential of a complex conjugate. Equation 3 of [Gleason] p. 308. (Contributed by NM, 29-Apr-2005.) (Revised by Mario Carneiro, 28-Apr-2014.)
Assertion
Ref Expression
efcj  |-  ( A  e.  CC  ->  ( exp `  ( * `  A ) )  =  ( * `  ( exp `  A ) ) )

Proof of Theorem efcj
Dummy variables  j  k  m  n are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cjcl 10620 . . 3  |-  ( A  e.  CC  ->  (
* `  A )  e.  CC )
2 eqid 2139 . . . 4  |-  ( n  e.  NN0  |->  ( ( ( * `  A
) ^ n )  /  ( ! `  n ) ) )  =  ( n  e. 
NN0  |->  ( ( ( * `  A ) ^ n )  / 
( ! `  n
) ) )
32efcvg 11372 . . 3  |-  ( ( * `  A )  e.  CC  ->  seq 0 (  +  , 
( n  e.  NN0  |->  ( ( ( * `
 A ) ^
n )  /  ( ! `  n )
) ) )  ~~>  ( exp `  ( * `  A
) ) )
41, 3syl 14 . 2  |-  ( A  e.  CC  ->  seq 0 (  +  , 
( n  e.  NN0  |->  ( ( ( * `
 A ) ^
n )  /  ( ! `  n )
) ) )  ~~>  ( exp `  ( * `  A
) ) )
5 nn0uz 9360 . . 3  |-  NN0  =  ( ZZ>= `  0 )
6 eqid 2139 . . . 4  |-  ( n  e.  NN0  |->  ( ( A ^ n )  /  ( ! `  n ) ) )  =  ( n  e. 
NN0  |->  ( ( A ^ n )  / 
( ! `  n
) ) )
76efcvg 11372 . . 3  |-  ( A  e.  CC  ->  seq 0 (  +  , 
( n  e.  NN0  |->  ( ( A ^
n )  /  ( ! `  n )
) ) )  ~~>  ( exp `  A ) )
8 seqex 10220 . . . 4  |-  seq 0
(  +  ,  ( n  e.  NN0  |->  ( ( ( * `  A
) ^ n )  /  ( ! `  n ) ) ) )  e.  _V
98a1i 9 . . 3  |-  ( A  e.  CC  ->  seq 0 (  +  , 
( n  e.  NN0  |->  ( ( ( * `
 A ) ^
n )  /  ( ! `  n )
) ) )  e. 
_V )
10 0zd 9066 . . 3  |-  ( A  e.  CC  ->  0  e.  ZZ )
116eftvalcn 11363 . . . . . 6  |-  ( ( A  e.  CC  /\  k  e.  NN0 )  -> 
( ( n  e. 
NN0  |->  ( ( A ^ n )  / 
( ! `  n
) ) ) `  k )  =  ( ( A ^ k
)  /  ( ! `
 k ) ) )
12 eftcl 11360 . . . . . 6  |-  ( ( A  e.  CC  /\  k  e.  NN0 )  -> 
( ( A ^
k )  /  ( ! `  k )
)  e.  CC )
1311, 12eqeltrd 2216 . . . . 5  |-  ( ( A  e.  CC  /\  k  e.  NN0 )  -> 
( ( n  e. 
NN0  |->  ( ( A ^ n )  / 
( ! `  n
) ) ) `  k )  e.  CC )
145, 10, 13serf 10247 . . . 4  |-  ( A  e.  CC  ->  seq 0 (  +  , 
( n  e.  NN0  |->  ( ( A ^
n )  /  ( ! `  n )
) ) ) : NN0 --> CC )
1514ffvelrnda 5555 . . 3  |-  ( ( A  e.  CC  /\  j  e.  NN0 )  -> 
(  seq 0 (  +  ,  ( n  e. 
NN0  |->  ( ( A ^ n )  / 
( ! `  n
) ) ) ) `
 j )  e.  CC )
16 addcl 7745 . . . . . 6  |-  ( ( k  e.  CC  /\  m  e.  CC )  ->  ( k  +  m
)  e.  CC )
1716adantl 275 . . . . 5  |-  ( ( ( A  e.  CC  /\  j  e.  NN0 )  /\  ( k  e.  CC  /\  m  e.  CC ) )  ->  ( k  +  m )  e.  CC )
18 simpl 108 . . . . . 6  |-  ( ( A  e.  CC  /\  j  e.  NN0 )  ->  A  e.  CC )
19 elnn0uz 9363 . . . . . . 7  |-  ( k  e.  NN0  <->  k  e.  (
ZZ>= `  0 ) )
2019biimpri 132 . . . . . 6  |-  ( k  e.  ( ZZ>= `  0
)  ->  k  e.  NN0 )
2118, 20, 13syl2an 287 . . . . 5  |-  ( ( ( A  e.  CC  /\  j  e.  NN0 )  /\  k  e.  ( ZZ>=
`  0 ) )  ->  ( ( n  e.  NN0  |->  ( ( A ^ n )  /  ( ! `  n ) ) ) `
 k )  e.  CC )
22 simpr 109 . . . . . 6  |-  ( ( A  e.  CC  /\  j  e.  NN0 )  -> 
j  e.  NN0 )
2322, 5eleqtrdi 2232 . . . . 5  |-  ( ( A  e.  CC  /\  j  e.  NN0 )  -> 
j  e.  ( ZZ>= ` 
0 ) )
24 cjadd 10656 . . . . . 6  |-  ( ( k  e.  CC  /\  m  e.  CC )  ->  ( * `  (
k  +  m ) )  =  ( ( * `  k )  +  ( * `  m ) ) )
2524adantl 275 . . . . 5  |-  ( ( ( A  e.  CC  /\  j  e.  NN0 )  /\  ( k  e.  CC  /\  m  e.  CC ) )  ->  ( * `  ( k  +  m
) )  =  ( ( * `  k
)  +  ( * `
 m ) ) )
26 expcl 10311 . . . . . . . . 9  |-  ( ( A  e.  CC  /\  k  e.  NN0 )  -> 
( A ^ k
)  e.  CC )
27 faccl 10481 . . . . . . . . . . 11  |-  ( k  e.  NN0  ->  ( ! `
 k )  e.  NN )
2827adantl 275 . . . . . . . . . 10  |-  ( ( A  e.  CC  /\  k  e.  NN0 )  -> 
( ! `  k
)  e.  NN )
2928nncnd 8734 . . . . . . . . 9  |-  ( ( A  e.  CC  /\  k  e.  NN0 )  -> 
( ! `  k
)  e.  CC )
3028nnap0d 8766 . . . . . . . . 9  |-  ( ( A  e.  CC  /\  k  e.  NN0 )  -> 
( ! `  k
) #  0 )
3126, 29, 30cjdivapd 10740 . . . . . . . 8  |-  ( ( A  e.  CC  /\  k  e.  NN0 )  -> 
( * `  (
( A ^ k
)  /  ( ! `
 k ) ) )  =  ( ( * `  ( A ^ k ) )  /  ( * `  ( ! `  k ) ) ) )
32 cjexp 10665 . . . . . . . . 9  |-  ( ( A  e.  CC  /\  k  e.  NN0 )  -> 
( * `  ( A ^ k ) )  =  ( ( * `
 A ) ^
k ) )
3328nnred 8733 . . . . . . . . . 10  |-  ( ( A  e.  CC  /\  k  e.  NN0 )  -> 
( ! `  k
)  e.  RR )
3433cjred 10743 . . . . . . . . 9  |-  ( ( A  e.  CC  /\  k  e.  NN0 )  -> 
( * `  ( ! `  k )
)  =  ( ! `
 k ) )
3532, 34oveq12d 5792 . . . . . . . 8  |-  ( ( A  e.  CC  /\  k  e.  NN0 )  -> 
( ( * `  ( A ^ k ) )  /  ( * `
 ( ! `  k ) ) )  =  ( ( ( * `  A ) ^ k )  / 
( ! `  k
) ) )
3631, 35eqtrd 2172 . . . . . . 7  |-  ( ( A  e.  CC  /\  k  e.  NN0 )  -> 
( * `  (
( A ^ k
)  /  ( ! `
 k ) ) )  =  ( ( ( * `  A
) ^ k )  /  ( ! `  k ) ) )
3711fveq2d 5425 . . . . . . 7  |-  ( ( A  e.  CC  /\  k  e.  NN0 )  -> 
( * `  (
( n  e.  NN0  |->  ( ( A ^
n )  /  ( ! `  n )
) ) `  k
) )  =  ( * `  ( ( A ^ k )  /  ( ! `  k ) ) ) )
382eftvalcn 11363 . . . . . . . 8  |-  ( ( ( * `  A
)  e.  CC  /\  k  e.  NN0 )  -> 
( ( n  e. 
NN0  |->  ( ( ( * `  A ) ^ n )  / 
( ! `  n
) ) ) `  k )  =  ( ( ( * `  A ) ^ k
)  /  ( ! `
 k ) ) )
391, 38sylan 281 . . . . . . 7  |-  ( ( A  e.  CC  /\  k  e.  NN0 )  -> 
( ( n  e. 
NN0  |->  ( ( ( * `  A ) ^ n )  / 
( ! `  n
) ) ) `  k )  =  ( ( ( * `  A ) ^ k
)  /  ( ! `
 k ) ) )
4036, 37, 393eqtr4d 2182 . . . . . 6  |-  ( ( A  e.  CC  /\  k  e.  NN0 )  -> 
( * `  (
( n  e.  NN0  |->  ( ( A ^
n )  /  ( ! `  n )
) ) `  k
) )  =  ( ( n  e.  NN0  |->  ( ( ( * `
 A ) ^
n )  /  ( ! `  n )
) ) `  k
) )
4118, 20, 40syl2an 287 . . . . 5  |-  ( ( ( A  e.  CC  /\  j  e.  NN0 )  /\  k  e.  ( ZZ>=
`  0 ) )  ->  ( * `  ( ( n  e. 
NN0  |->  ( ( A ^ n )  / 
( ! `  n
) ) ) `  k ) )  =  ( ( n  e. 
NN0  |->  ( ( ( * `  A ) ^ n )  / 
( ! `  n
) ) ) `  k ) )
4220adantl 275 . . . . . . 7  |-  ( ( ( A  e.  CC  /\  j  e.  NN0 )  /\  k  e.  ( ZZ>=
`  0 ) )  ->  k  e.  NN0 )
431ad2antrr 479 . . . . . . . . 9  |-  ( ( ( A  e.  CC  /\  j  e.  NN0 )  /\  k  e.  ( ZZ>=
`  0 ) )  ->  ( * `  A )  e.  CC )
4443, 42expcld 10424 . . . . . . . 8  |-  ( ( ( A  e.  CC  /\  j  e.  NN0 )  /\  k  e.  ( ZZ>=
`  0 ) )  ->  ( ( * `
 A ) ^
k )  e.  CC )
4518, 20, 29syl2an 287 . . . . . . . 8  |-  ( ( ( A  e.  CC  /\  j  e.  NN0 )  /\  k  e.  ( ZZ>=
`  0 ) )  ->  ( ! `  k )  e.  CC )
4618, 20, 30syl2an 287 . . . . . . . 8  |-  ( ( ( A  e.  CC  /\  j  e.  NN0 )  /\  k  e.  ( ZZ>=
`  0 ) )  ->  ( ! `  k ) #  0 )
4744, 45, 46divclapd 8550 . . . . . . 7  |-  ( ( ( A  e.  CC  /\  j  e.  NN0 )  /\  k  e.  ( ZZ>=
`  0 ) )  ->  ( ( ( * `  A ) ^ k )  / 
( ! `  k
) )  e.  CC )
48 oveq2 5782 . . . . . . . . 9  |-  ( n  =  k  ->  (
( * `  A
) ^ n )  =  ( ( * `
 A ) ^
k ) )
49 fveq2 5421 . . . . . . . . 9  |-  ( n  =  k  ->  ( ! `  n )  =  ( ! `  k ) )
5048, 49oveq12d 5792 . . . . . . . 8  |-  ( n  =  k  ->  (
( ( * `  A ) ^ n
)  /  ( ! `
 n ) )  =  ( ( ( * `  A ) ^ k )  / 
( ! `  k
) ) )
5150, 2fvmptg 5497 . . . . . . 7  |-  ( ( k  e.  NN0  /\  ( ( ( * `
 A ) ^
k )  /  ( ! `  k )
)  e.  CC )  ->  ( ( n  e.  NN0  |->  ( ( ( * `  A
) ^ n )  /  ( ! `  n ) ) ) `
 k )  =  ( ( ( * `
 A ) ^
k )  /  ( ! `  k )
) )
5242, 47, 51syl2anc 408 . . . . . 6  |-  ( ( ( A  e.  CC  /\  j  e.  NN0 )  /\  k  e.  ( ZZ>=
`  0 ) )  ->  ( ( n  e.  NN0  |->  ( ( ( * `  A
) ^ n )  /  ( ! `  n ) ) ) `
 k )  =  ( ( ( * `
 A ) ^
k )  /  ( ! `  k )
) )
5352, 47eqeltrd 2216 . . . . 5  |-  ( ( ( A  e.  CC  /\  j  e.  NN0 )  /\  k  e.  ( ZZ>=
`  0 ) )  ->  ( ( n  e.  NN0  |->  ( ( ( * `  A
) ^ n )  /  ( ! `  n ) ) ) `
 k )  e.  CC )
5417, 21, 23, 25, 41, 53, 17seq3homo 10283 . . . 4  |-  ( ( A  e.  CC  /\  j  e.  NN0 )  -> 
( * `  (  seq 0 (  +  , 
( n  e.  NN0  |->  ( ( A ^
n )  /  ( ! `  n )
) ) ) `  j ) )  =  (  seq 0 (  +  ,  ( n  e.  NN0  |->  ( ( ( * `  A
) ^ n )  /  ( ! `  n ) ) ) ) `  j ) )
5554eqcomd 2145 . . 3  |-  ( ( A  e.  CC  /\  j  e.  NN0 )  -> 
(  seq 0 (  +  ,  ( n  e. 
NN0  |->  ( ( ( * `  A ) ^ n )  / 
( ! `  n
) ) ) ) `
 j )  =  ( * `  (  seq 0 (  +  , 
( n  e.  NN0  |->  ( ( A ^
n )  /  ( ! `  n )
) ) ) `  j ) ) )
565, 7, 9, 10, 15, 55climcj 11090 . 2  |-  ( A  e.  CC  ->  seq 0 (  +  , 
( n  e.  NN0  |->  ( ( ( * `
 A ) ^
n )  /  ( ! `  n )
) ) )  ~~>  ( * `
 ( exp `  A
) ) )
57 climuni 11062 . 2  |-  ( (  seq 0 (  +  ,  ( n  e. 
NN0  |->  ( ( ( * `  A ) ^ n )  / 
( ! `  n
) ) ) )  ~~>  ( exp `  (
* `  A )
)  /\  seq 0
(  +  ,  ( n  e.  NN0  |->  ( ( ( * `  A
) ^ n )  /  ( ! `  n ) ) ) )  ~~>  ( * `  ( exp `  A ) ) )  ->  ( exp `  ( * `  A ) )  =  ( * `  ( exp `  A ) ) )
584, 56, 57syl2anc 408 1  |-  ( A  e.  CC  ->  ( exp `  ( * `  A ) )  =  ( * `  ( exp `  A ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    = wceq 1331    e. wcel 1480   _Vcvv 2686   class class class wbr 3929    |-> cmpt 3989   ` cfv 5123  (class class class)co 5774   CCcc 7618   0cc0 7620    + caddc 7623   # cap 8343    / cdiv 8432   NNcn 8720   NN0cn0 8977   ZZ>=cuz 9326    seqcseq 10218   ^cexp 10292   !cfa 10471   *ccj 10611    ~~> cli 11047   expce 11348
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-13 1491  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2121  ax-coll 4043  ax-sep 4046  ax-nul 4054  ax-pow 4098  ax-pr 4131  ax-un 4355  ax-setind 4452  ax-iinf 4502  ax-cnex 7711  ax-resscn 7712  ax-1cn 7713  ax-1re 7714  ax-icn 7715  ax-addcl 7716  ax-addrcl 7717  ax-mulcl 7718  ax-mulrcl 7719  ax-addcom 7720  ax-mulcom 7721  ax-addass 7722  ax-mulass 7723  ax-distr 7724  ax-i2m1 7725  ax-0lt1 7726  ax-1rid 7727  ax-0id 7728  ax-rnegex 7729  ax-precex 7730  ax-cnre 7731  ax-pre-ltirr 7732  ax-pre-ltwlin 7733  ax-pre-lttrn 7734  ax-pre-apti 7735  ax-pre-ltadd 7736  ax-pre-mulgt0 7737  ax-pre-mulext 7738  ax-arch 7739  ax-caucvg 7740
This theorem depends on definitions:  df-bi 116  df-dc 820  df-3or 963  df-3an 964  df-tru 1334  df-fal 1337  df-nf 1437  df-sb 1736  df-eu 2002  df-mo 2003  df-clab 2126  df-cleq 2132  df-clel 2135  df-nfc 2270  df-ne 2309  df-nel 2404  df-ral 2421  df-rex 2422  df-reu 2423  df-rmo 2424  df-rab 2425  df-v 2688  df-sbc 2910  df-csb 3004  df-dif 3073  df-un 3075  df-in 3077  df-ss 3084  df-nul 3364  df-if 3475  df-pw 3512  df-sn 3533  df-pr 3534  df-op 3536  df-uni 3737  df-int 3772  df-iun 3815  df-br 3930  df-opab 3990  df-mpt 3991  df-tr 4027  df-id 4215  df-po 4218  df-iso 4219  df-iord 4288  df-on 4290  df-ilim 4291  df-suc 4293  df-iom 4505  df-xp 4545  df-rel 4546  df-cnv 4547  df-co 4548  df-dm 4549  df-rn 4550  df-res 4551  df-ima 4552  df-iota 5088  df-fun 5125  df-fn 5126  df-f 5127  df-f1 5128  df-fo 5129  df-f1o 5130  df-fv 5131  df-isom 5132  df-riota 5730  df-ov 5777  df-oprab 5778  df-mpo 5779  df-1st 6038  df-2nd 6039  df-recs 6202  df-irdg 6267  df-frec 6288  df-1o 6313  df-oadd 6317  df-er 6429  df-en 6635  df-dom 6636  df-fin 6637  df-pnf 7802  df-mnf 7803  df-xr 7804  df-ltxr 7805  df-le 7806  df-sub 7935  df-neg 7936  df-reap 8337  df-ap 8344  df-div 8433  df-inn 8721  df-2 8779  df-3 8780  df-4 8781  df-n0 8978  df-z 9055  df-uz 9327  df-q 9412  df-rp 9442  df-ico 9677  df-fz 9791  df-fzo 9920  df-seqfrec 10219  df-exp 10293  df-fac 10472  df-ihash 10522  df-cj 10614  df-re 10615  df-im 10616  df-rsqrt 10770  df-abs 10771  df-clim 11048  df-sumdc 11123  df-ef 11354
This theorem is referenced by:  resinval  11422  recosval  11423
  Copyright terms: Public domain W3C validator