![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > biimpri | Unicode version |
Description: Infer a converse implication from a logical equivalence. (Contributed by NM, 5-Aug-1993.) (Proof shortened by Wolf Lammen, 16-Sep-2013.) |
Ref | Expression |
---|---|
biimpri.1 |
![]() ![]() ![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
biimpri |
![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | biimpri.1 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() | |
2 | 1 | bicomi 130 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() |
3 | 2 | biimpi 118 |
1
![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 |
This theorem depends on definitions: df-bi 115 |
This theorem is referenced by: sylibr 132 sylbir 133 sylbbr 134 sylbb1 135 sylbb2 136 mpbir 144 syl5bir 151 syl6ibr 160 bitri 182 sylanbr 279 sylan2br 282 simplbi2 377 sylanblrc 407 mtbi 628 pm3.44 668 orbi2i 712 pm2.31 718 dcor 877 rnlem 918 syl3an1br 1209 syl3an2br 1210 syl3an3br 1211 xorbin 1316 3impexpbicom 1368 equveli 1683 sbbii 1689 dveeq2or 1738 exmoeudc 2005 eueq2dc 2766 ralun 3155 undif3ss 3232 ssunieq 3642 a9evsep 3908 tfi 4331 peano5 4347 opelxpi 4402 ndmima 4732 iotass 4914 dffo2 5141 dff1o2 5162 resdif 5179 f1o00 5192 ressnop0 5376 fsnunfv 5395 ovid 5648 ovidig 5649 f1stres 5817 f2ndres 5818 rdgon 6035 diffisn 6427 diffifi 6428 unsnfi 6439 ordiso2 6505 ltexnqq 6660 enq0sym 6684 prarloclem5 6752 nqprloc 6797 nqprl 6803 nqpru 6804 pitonn 7078 axcnre 7109 peano5nnnn 7120 axcaucvglemres 7127 le2tri3i 7286 muldivdirap 7862 peano5nni 8109 0nn0 8370 uzind4 8757 elfz4 9114 eluzfz 9116 ssfzo12bi 9311 ioom 9347 iser0 9568 sizeinfuni 9801 nn0abscl 10109 fimaxre2 10247 iserile 10318 ndvdsadd 10475 gcdsupex 10493 gcdsupcl 10494 ialgrlemconst 10569 divgcdcoprmex 10628 1idssfct 10641 bj-sucexg 10871 bj-indind 10885 bj-2inf 10891 findset 10898 |
Copyright terms: Public domain | W3C validator |