ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mapsn Unicode version

Theorem mapsn 6584
Description: The value of set exponentiation with a singleton exponent. Theorem 98 of [Suppes] p. 89. (Contributed by NM, 10-Dec-2003.)
Hypotheses
Ref Expression
map0.1  |-  A  e. 
_V
map0.2  |-  B  e. 
_V
Assertion
Ref Expression
mapsn  |-  ( A  ^m  { B }
)  =  { f  |  E. y  e.  A  f  =  { <. B ,  y >. } }
Distinct variable groups:    y, f, A    B, f, y

Proof of Theorem mapsn
StepHypRef Expression
1 map0.1 . . . 4  |-  A  e. 
_V
2 map0.2 . . . . 5  |-  B  e. 
_V
32snex 4109 . . . 4  |-  { B }  e.  _V
41, 3elmap 6571 . . 3  |-  ( f  e.  ( A  ^m  { B } )  <->  f : { B } --> A )
5 ffn 5272 . . . . . . . 8  |-  ( f : { B } --> A  ->  f  Fn  { B } )
62snid 3556 . . . . . . . 8  |-  B  e. 
{ B }
7 fneu 5227 . . . . . . . 8  |-  ( ( f  Fn  { B }  /\  B  e.  { B } )  ->  E! y  B f y )
85, 6, 7sylancl 409 . . . . . . 7  |-  ( f : { B } --> A  ->  E! y  B f y )
9 euabsn 3593 . . . . . . . 8  |-  ( E! y  B f y  <->  E. y { y  |  B f y }  =  { y } )
10 imasng 4904 . . . . . . . . . . . 12  |-  ( B  e.  _V  ->  (
f " { B } )  =  {
y  |  B f y } )
112, 10ax-mp 5 . . . . . . . . . . 11  |-  ( f
" { B }
)  =  { y  |  B f y }
12 imadmrn 4891 . . . . . . . . . . . 12  |-  ( f
" dom  f )  =  ran  f
13 fdm 5278 . . . . . . . . . . . . 13  |-  ( f : { B } --> A  ->  dom  f  =  { B } )
1413imaeq2d 4881 . . . . . . . . . . . 12  |-  ( f : { B } --> A  ->  ( f " dom  f )  =  ( f " { B } ) )
1512, 14syl5reqr 2187 . . . . . . . . . . 11  |-  ( f : { B } --> A  ->  ( f " { B } )  =  ran  f )
1611, 15syl5eqr 2186 . . . . . . . . . 10  |-  ( f : { B } --> A  ->  { y  |  B f y }  =  ran  f )
1716eqeq1d 2148 . . . . . . . . 9  |-  ( f : { B } --> A  ->  ( { y  |  B f y }  =  { y }  <->  ran  f  =  {
y } ) )
1817exbidv 1797 . . . . . . . 8  |-  ( f : { B } --> A  ->  ( E. y { y  |  B
f y }  =  { y }  <->  E. y ran  f  =  {
y } ) )
199, 18syl5bb 191 . . . . . . 7  |-  ( f : { B } --> A  ->  ( E! y  B f y  <->  E. y ran  f  =  {
y } ) )
208, 19mpbid 146 . . . . . 6  |-  ( f : { B } --> A  ->  E. y ran  f  =  { y } )
21 vex 2689 . . . . . . . . . . 11  |-  y  e. 
_V
2221snid 3556 . . . . . . . . . 10  |-  y  e. 
{ y }
23 eleq2 2203 . . . . . . . . . 10  |-  ( ran  f  =  { y }  ->  ( y  e.  ran  f  <->  y  e.  { y } ) )
2422, 23mpbiri 167 . . . . . . . . 9  |-  ( ran  f  =  { y }  ->  y  e.  ran  f )
25 frn 5281 . . . . . . . . . 10  |-  ( f : { B } --> A  ->  ran  f  C_  A )
2625sseld 3096 . . . . . . . . 9  |-  ( f : { B } --> A  ->  ( y  e. 
ran  f  ->  y  e.  A ) )
2724, 26syl5 32 . . . . . . . 8  |-  ( f : { B } --> A  ->  ( ran  f  =  { y }  ->  y  e.  A ) )
28 dffn4 5351 . . . . . . . . . . . 12  |-  ( f  Fn  { B }  <->  f : { B } -onto-> ran  f )
295, 28sylib 121 . . . . . . . . . . 11  |-  ( f : { B } --> A  ->  f : { B } -onto-> ran  f )
30 fof 5345 . . . . . . . . . . 11  |-  ( f : { B } -onto-> ran  f  ->  f : { B } --> ran  f
)
3129, 30syl 14 . . . . . . . . . 10  |-  ( f : { B } --> A  ->  f : { B } --> ran  f )
32 feq3 5257 . . . . . . . . . 10  |-  ( ran  f  =  { y }  ->  ( f : { B } --> ran  f  <->  f : { B } --> { y } ) )
3331, 32syl5ibcom 154 . . . . . . . . 9  |-  ( f : { B } --> A  ->  ( ran  f  =  { y }  ->  f : { B } --> { y } ) )
342, 21fsn 5592 . . . . . . . . 9  |-  ( f : { B } --> { y }  <->  f  =  { <. B ,  y
>. } )
3533, 34syl6ib 160 . . . . . . . 8  |-  ( f : { B } --> A  ->  ( ran  f  =  { y }  ->  f  =  { <. B , 
y >. } ) )
3627, 35jcad 305 . . . . . . 7  |-  ( f : { B } --> A  ->  ( ran  f  =  { y }  ->  ( y  e.  A  /\  f  =  { <. B , 
y >. } ) ) )
3736eximdv 1852 . . . . . 6  |-  ( f : { B } --> A  ->  ( E. y ran  f  =  {
y }  ->  E. y
( y  e.  A  /\  f  =  { <. B ,  y >. } ) ) )
3820, 37mpd 13 . . . . 5  |-  ( f : { B } --> A  ->  E. y ( y  e.  A  /\  f  =  { <. B ,  y
>. } ) )
39 df-rex 2422 . . . . 5  |-  ( E. y  e.  A  f  =  { <. B , 
y >. }  <->  E. y
( y  e.  A  /\  f  =  { <. B ,  y >. } ) )
4038, 39sylibr 133 . . . 4  |-  ( f : { B } --> A  ->  E. y  e.  A  f  =  { <. B , 
y >. } )
412, 21f1osn 5407 . . . . . . . . 9  |-  { <. B ,  y >. } : { B } -1-1-onto-> { y }
42 f1oeq1 5356 . . . . . . . . 9  |-  ( f  =  { <. B , 
y >. }  ->  (
f : { B }
-1-1-onto-> { y }  <->  { <. B , 
y >. } : { B } -1-1-onto-> { y } ) )
4341, 42mpbiri 167 . . . . . . . 8  |-  ( f  =  { <. B , 
y >. }  ->  f : { B } -1-1-onto-> { y } )
44 f1of 5367 . . . . . . . 8  |-  ( f : { B } -1-1-onto-> {
y }  ->  f : { B } --> { y } )
4543, 44syl 14 . . . . . . 7  |-  ( f  =  { <. B , 
y >. }  ->  f : { B } --> { y } )
46 snssi 3664 . . . . . . 7  |-  ( y  e.  A  ->  { y }  C_  A )
47 fss 5284 . . . . . . 7  |-  ( ( f : { B }
--> { y }  /\  { y }  C_  A
)  ->  f : { B } --> A )
4845, 46, 47syl2an 287 . . . . . 6  |-  ( ( f  =  { <. B ,  y >. }  /\  y  e.  A )  ->  f : { B }
--> A )
4948expcom 115 . . . . 5  |-  ( y  e.  A  ->  (
f  =  { <. B ,  y >. }  ->  f : { B } --> A ) )
5049rexlimiv 2543 . . . 4  |-  ( E. y  e.  A  f  =  { <. B , 
y >. }  ->  f : { B } --> A )
5140, 50impbii 125 . . 3  |-  ( f : { B } --> A 
<->  E. y  e.  A  f  =  { <. B , 
y >. } )
524, 51bitri 183 . 2  |-  ( f  e.  ( A  ^m  { B } )  <->  E. y  e.  A  f  =  { <. B ,  y
>. } )
5352abbi2i 2254 1  |-  ( A  ^m  { B }
)  =  { f  |  E. y  e.  A  f  =  { <. B ,  y >. } }
Colors of variables: wff set class
Syntax hints:    /\ wa 103    = wceq 1331   E.wex 1468    e. wcel 1480   E!weu 1999   {cab 2125   E.wrex 2417   _Vcvv 2686    C_ wss 3071   {csn 3527   <.cop 3530   class class class wbr 3929   dom cdm 4539   ran crn 4540   "cima 4542    Fn wfn 5118   -->wf 5119   -onto->wfo 5121   -1-1-onto->wf1o 5122  (class class class)co 5774    ^m cmap 6542
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-13 1491  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2121  ax-sep 4046  ax-pow 4098  ax-pr 4131  ax-un 4355  ax-setind 4452
This theorem depends on definitions:  df-bi 116  df-3an 964  df-tru 1334  df-fal 1337  df-nf 1437  df-sb 1736  df-eu 2002  df-mo 2003  df-clab 2126  df-cleq 2132  df-clel 2135  df-nfc 2270  df-ne 2309  df-ral 2421  df-rex 2422  df-reu 2423  df-v 2688  df-sbc 2910  df-dif 3073  df-un 3075  df-in 3077  df-ss 3084  df-pw 3512  df-sn 3533  df-pr 3534  df-op 3536  df-uni 3737  df-br 3930  df-opab 3990  df-id 4215  df-xp 4545  df-rel 4546  df-cnv 4547  df-co 4548  df-dm 4549  df-rn 4550  df-res 4551  df-ima 4552  df-iota 5088  df-fun 5125  df-fn 5126  df-f 5127  df-f1 5128  df-fo 5129  df-f1o 5130  df-fv 5131  df-ov 5777  df-oprab 5778  df-mpo 5779  df-map 6544
This theorem is referenced by:  mapsnen  6705
  Copyright terms: Public domain W3C validator