ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nn0o Unicode version

Theorem nn0o 10219
Description: An alternate characterization of an odd nonnegative integer. (Contributed by AV, 28-May-2020.) (Proof shortened by AV, 2-Jun-2020.)
Assertion
Ref Expression
nn0o  |-  ( ( N  e.  NN0  /\  ( ( N  + 
1 )  /  2
)  e.  NN0 )  ->  ( ( N  - 
1 )  /  2
)  e.  NN0 )

Proof of Theorem nn0o
StepHypRef Expression
1 nn0o1gt2 10217 . 2  |-  ( ( N  e.  NN0  /\  ( ( N  + 
1 )  /  2
)  e.  NN0 )  ->  ( N  =  1  \/  2  <  N
) )
2 1m1e0 8059 . . . . . . . 8  |-  ( 1  -  1 )  =  0
32oveq1i 5550 . . . . . . 7  |-  ( ( 1  -  1 )  /  2 )  =  ( 0  /  2
)
4 2cn 8061 . . . . . . . 8  |-  2  e.  CC
5 2ap0 8083 . . . . . . . 8  |-  2 #  0
64, 5div0api 7797 . . . . . . 7  |-  ( 0  /  2 )  =  0
73, 6eqtri 2076 . . . . . 6  |-  ( ( 1  -  1 )  /  2 )  =  0
8 0nn0 8254 . . . . . 6  |-  0  e.  NN0
97, 8eqeltri 2126 . . . . 5  |-  ( ( 1  -  1 )  /  2 )  e. 
NN0
10 oveq1 5547 . . . . . . . 8  |-  ( N  =  1  ->  ( N  -  1 )  =  ( 1  -  1 ) )
1110oveq1d 5555 . . . . . . 7  |-  ( N  =  1  ->  (
( N  -  1 )  /  2 )  =  ( ( 1  -  1 )  / 
2 ) )
1211eleq1d 2122 . . . . . 6  |-  ( N  =  1  ->  (
( ( N  - 
1 )  /  2
)  e.  NN0  <->  ( (
1  -  1 )  /  2 )  e. 
NN0 ) )
1312adantr 265 . . . . 5  |-  ( ( N  =  1  /\  ( N  e.  NN0  /\  ( ( N  + 
1 )  /  2
)  e.  NN0 )
)  ->  ( (
( N  -  1 )  /  2 )  e.  NN0  <->  ( ( 1  -  1 )  / 
2 )  e.  NN0 ) )
149, 13mpbiri 161 . . . 4  |-  ( ( N  =  1  /\  ( N  e.  NN0  /\  ( ( N  + 
1 )  /  2
)  e.  NN0 )
)  ->  ( ( N  -  1 )  /  2 )  e. 
NN0 )
1514ex 112 . . 3  |-  ( N  =  1  ->  (
( N  e.  NN0  /\  ( ( N  + 
1 )  /  2
)  e.  NN0 )  ->  ( ( N  - 
1 )  /  2
)  e.  NN0 )
)
16 2z 8330 . . . . . . . 8  |-  2  e.  ZZ
1716a1i 9 . . . . . . 7  |-  ( ( 2  <  N  /\  ( N  e.  NN0  /\  ( ( N  + 
1 )  /  2
)  e.  NN0 )
)  ->  2  e.  ZZ )
18 nn0z 8322 . . . . . . . 8  |-  ( N  e.  NN0  ->  N  e.  ZZ )
1918ad2antrl 467 . . . . . . 7  |-  ( ( 2  <  N  /\  ( N  e.  NN0  /\  ( ( N  + 
1 )  /  2
)  e.  NN0 )
)  ->  N  e.  ZZ )
20 2re 8060 . . . . . . . . . 10  |-  2  e.  RR
21 nn0re 8248 . . . . . . . . . 10  |-  ( N  e.  NN0  ->  N  e.  RR )
22 ltle 7164 . . . . . . . . . 10  |-  ( ( 2  e.  RR  /\  N  e.  RR )  ->  ( 2  <  N  ->  2  <_  N )
)
2320, 21, 22sylancr 399 . . . . . . . . 9  |-  ( N  e.  NN0  ->  ( 2  <  N  ->  2  <_  N ) )
2423adantr 265 . . . . . . . 8  |-  ( ( N  e.  NN0  /\  ( ( N  + 
1 )  /  2
)  e.  NN0 )  ->  ( 2  <  N  ->  2  <_  N )
)
2524impcom 120 . . . . . . 7  |-  ( ( 2  <  N  /\  ( N  e.  NN0  /\  ( ( N  + 
1 )  /  2
)  e.  NN0 )
)  ->  2  <_  N )
26 eluz2 8575 . . . . . . 7  |-  ( N  e.  ( ZZ>= `  2
)  <->  ( 2  e.  ZZ  /\  N  e.  ZZ  /\  2  <_  N ) )
2717, 19, 25, 26syl3anbrc 1099 . . . . . 6  |-  ( ( 2  <  N  /\  ( N  e.  NN0  /\  ( ( N  + 
1 )  /  2
)  e.  NN0 )
)  ->  N  e.  ( ZZ>= `  2 )
)
28 simprr 492 . . . . . 6  |-  ( ( 2  <  N  /\  ( N  e.  NN0  /\  ( ( N  + 
1 )  /  2
)  e.  NN0 )
)  ->  ( ( N  +  1 )  /  2 )  e. 
NN0 )
2927, 28jca 294 . . . . 5  |-  ( ( 2  <  N  /\  ( N  e.  NN0  /\  ( ( N  + 
1 )  /  2
)  e.  NN0 )
)  ->  ( N  e.  ( ZZ>= `  2 )  /\  ( ( N  + 
1 )  /  2
)  e.  NN0 )
)
30 nno 10218 . . . . 5  |-  ( ( N  e.  ( ZZ>= ` 
2 )  /\  (
( N  +  1 )  /  2 )  e.  NN0 )  -> 
( ( N  - 
1 )  /  2
)  e.  NN )
31 nnnn0 8246 . . . . 5  |-  ( ( ( N  -  1 )  /  2 )  e.  NN  ->  (
( N  -  1 )  /  2 )  e.  NN0 )
3229, 30, 313syl 17 . . . 4  |-  ( ( 2  <  N  /\  ( N  e.  NN0  /\  ( ( N  + 
1 )  /  2
)  e.  NN0 )
)  ->  ( ( N  -  1 )  /  2 )  e. 
NN0 )
3332ex 112 . . 3  |-  ( 2  <  N  ->  (
( N  e.  NN0  /\  ( ( N  + 
1 )  /  2
)  e.  NN0 )  ->  ( ( N  - 
1 )  /  2
)  e.  NN0 )
)
3415, 33jaoi 646 . 2  |-  ( ( N  =  1  \/  2  <  N )  ->  ( ( N  e.  NN0  /\  (
( N  +  1 )  /  2 )  e.  NN0 )  -> 
( ( N  - 
1 )  /  2
)  e.  NN0 )
)
351, 34mpcom 36 1  |-  ( ( N  e.  NN0  /\  ( ( N  + 
1 )  /  2
)  e.  NN0 )  ->  ( ( N  - 
1 )  /  2
)  e.  NN0 )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 101    <-> wb 102    \/ wo 639    = wceq 1259    e. wcel 1409   class class class wbr 3792   ` cfv 4930  (class class class)co 5540   RRcr 6946   0cc0 6947   1c1 6948    + caddc 6950    < clt 7119    <_ cle 7120    - cmin 7245    / cdiv 7725   NNcn 7990   2c2 8040   NN0cn0 8239   ZZcz 8302   ZZ>=cuz 8569
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 103  ax-ia2 104  ax-ia3 105  ax-in1 554  ax-in2 555  ax-io 640  ax-5 1352  ax-7 1353  ax-gen 1354  ax-ie1 1398  ax-ie2 1399  ax-8 1411  ax-10 1412  ax-11 1413  ax-i12 1414  ax-bndl 1415  ax-4 1416  ax-13 1420  ax-14 1421  ax-17 1435  ax-i9 1439  ax-ial 1443  ax-i5r 1444  ax-ext 2038  ax-coll 3900  ax-sep 3903  ax-nul 3911  ax-pow 3955  ax-pr 3972  ax-un 4198  ax-setind 4290  ax-iinf 4339  ax-cnex 7033  ax-resscn 7034  ax-1cn 7035  ax-1re 7036  ax-icn 7037  ax-addcl 7038  ax-addrcl 7039  ax-mulcl 7040  ax-mulrcl 7041  ax-addcom 7042  ax-mulcom 7043  ax-addass 7044  ax-mulass 7045  ax-distr 7046  ax-i2m1 7047  ax-1rid 7049  ax-0id 7050  ax-rnegex 7051  ax-precex 7052  ax-cnre 7053  ax-pre-ltirr 7054  ax-pre-ltwlin 7055  ax-pre-lttrn 7056  ax-pre-apti 7057  ax-pre-ltadd 7058  ax-pre-mulgt0 7059  ax-pre-mulext 7060
This theorem depends on definitions:  df-bi 114  df-dc 754  df-3or 897  df-3an 898  df-tru 1262  df-fal 1265  df-nf 1366  df-sb 1662  df-eu 1919  df-mo 1920  df-clab 2043  df-cleq 2049  df-clel 2052  df-nfc 2183  df-ne 2221  df-nel 2315  df-ral 2328  df-rex 2329  df-reu 2330  df-rmo 2331  df-rab 2332  df-v 2576  df-sbc 2788  df-csb 2881  df-dif 2948  df-un 2950  df-in 2952  df-ss 2959  df-nul 3253  df-pw 3389  df-sn 3409  df-pr 3410  df-op 3412  df-uni 3609  df-int 3644  df-iun 3687  df-br 3793  df-opab 3847  df-mpt 3848  df-tr 3883  df-eprel 4054  df-id 4058  df-po 4061  df-iso 4062  df-iord 4131  df-on 4133  df-suc 4136  df-iom 4342  df-xp 4379  df-rel 4380  df-cnv 4381  df-co 4382  df-dm 4383  df-rn 4384  df-res 4385  df-ima 4386  df-iota 4895  df-fun 4932  df-fn 4933  df-f 4934  df-f1 4935  df-fo 4936  df-f1o 4937  df-fv 4938  df-riota 5496  df-ov 5543  df-oprab 5544  df-mpt2 5545  df-1st 5795  df-2nd 5796  df-recs 5951  df-irdg 5988  df-1o 6032  df-2o 6033  df-oadd 6036  df-omul 6037  df-er 6137  df-ec 6139  df-qs 6143  df-ni 6460  df-pli 6461  df-mi 6462  df-lti 6463  df-plpq 6500  df-mpq 6501  df-enq 6503  df-nqqs 6504  df-plqqs 6505  df-mqqs 6506  df-1nqqs 6507  df-rq 6508  df-ltnqqs 6509  df-enq0 6580  df-nq0 6581  df-0nq0 6582  df-plq0 6583  df-mq0 6584  df-inp 6622  df-i1p 6623  df-iplp 6624  df-iltp 6626  df-enr 6869  df-nr 6870  df-ltr 6873  df-0r 6874  df-1r 6875  df-0 6954  df-1 6955  df-r 6957  df-lt 6960  df-pnf 7121  df-mnf 7122  df-xr 7123  df-ltxr 7124  df-le 7125  df-sub 7247  df-neg 7248  df-reap 7640  df-ap 7647  df-div 7726  df-inn 7991  df-2 8049  df-3 8050  df-4 8051  df-n0 8240  df-z 8303  df-uz 8570
This theorem is referenced by:  nn0ob  10220
  Copyright terms: Public domain W3C validator