ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nq0m0r Unicode version

Theorem nq0m0r 6697
Description: Multiplication with zero for non-negative fractions. (Contributed by Jim Kingdon, 5-Nov-2019.)
Assertion
Ref Expression
nq0m0r  |-  ( A  e. Q0  ->  (0Q0 ·Q0  A )  = 0Q0 )

Proof of Theorem nq0m0r
Dummy variables  v  w are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nq0nn 6683 . 2  |-  ( A  e. Q0  ->  E. w E. v
( ( w  e. 
om  /\  v  e.  N. )  /\  A  =  [ <. w ,  v
>. ] ~Q0  ) )
2 df-0nq0 6667 . . . . . 6  |- 0Q0  =  [ <. (/) ,  1o >. ] ~Q0
3 oveq12 5546 . . . . . 6  |-  ( (0Q0  =  [ <. (/) ,  1o >. ] ~Q0  /\  A  =  [ <. w ,  v >. ] ~Q0  )  ->  (0Q0 ·Q0  A )  =  ( [ <. (/)
,  1o >. ] ~Q0 ·Q0  [ <. w ,  v >. ] ~Q0  ) )
42, 3mpan 415 . . . . 5  |-  ( A  =  [ <. w ,  v >. ] ~Q0  ->  (0Q0 ·Q0  A )  =  ( [ <. (/)
,  1o >. ] ~Q0 ·Q0  [ <. w ,  v >. ] ~Q0  ) )
5 peano1 4337 . . . . . 6  |-  (/)  e.  om
6 1pi 6556 . . . . . 6  |-  1o  e.  N.
7 mulnnnq0 6691 . . . . . 6  |-  ( ( ( (/)  e.  om  /\  1o  e.  N. )  /\  ( w  e.  om  /\  v  e.  N. )
)  ->  ( [ <.
(/) ,  1o >. ] ~Q0 ·Q0  [ <. w ,  v >. ] ~Q0  )  =  [ <. (
(/)  .o  w ) ,  ( 1o  .o  v ) >. ] ~Q0  )
85, 6, 7mpanl12 427 . . . . 5  |-  ( ( w  e.  om  /\  v  e.  N. )  ->  ( [ <. (/) ,  1o >. ] ~Q0 ·Q0  [ <. w ,  v >. ] ~Q0  )  =  [ <. (
(/)  .o  w ) ,  ( 1o  .o  v ) >. ] ~Q0  )
94, 8sylan9eqr 2136 . . . 4  |-  ( ( ( w  e.  om  /\  v  e.  N. )  /\  A  =  [ <. w ,  v >. ] ~Q0  )  ->  (0Q0 ·Q0  A )  =  [ <. ( (/) 
.o  w ) ,  ( 1o  .o  v
) >. ] ~Q0  )
10 nnm0r 6116 . . . . . . . . . . 11  |-  ( w  e.  om  ->  ( (/) 
.o  w )  =  (/) )
1110oveq1d 5552 . . . . . . . . . 10  |-  ( w  e.  om  ->  (
( (/)  .o  w )  .o  1o )  =  ( (/)  .o  1o ) )
12 1onn 6152 . . . . . . . . . . 11  |-  1o  e.  om
13 nnm0r 6116 . . . . . . . . . . 11  |-  ( 1o  e.  om  ->  ( (/) 
.o  1o )  =  (/) )
1412, 13ax-mp 7 . . . . . . . . . 10  |-  ( (/)  .o  1o )  =  (/)
1511, 14syl6eq 2130 . . . . . . . . 9  |-  ( w  e.  om  ->  (
( (/)  .o  w )  .o  1o )  =  (/) )
1615adantr 270 . . . . . . . 8  |-  ( ( w  e.  om  /\  v  e.  N. )  ->  ( ( (/)  .o  w
)  .o  1o )  =  (/) )
17 mulpiord 6558 . . . . . . . . . . . 12  |-  ( ( 1o  e.  N.  /\  v  e.  N. )  ->  ( 1o  .N  v
)  =  ( 1o 
.o  v ) )
18 mulclpi 6569 . . . . . . . . . . . 12  |-  ( ( 1o  e.  N.  /\  v  e.  N. )  ->  ( 1o  .N  v
)  e.  N. )
1917, 18eqeltrrd 2157 . . . . . . . . . . 11  |-  ( ( 1o  e.  N.  /\  v  e.  N. )  ->  ( 1o  .o  v
)  e.  N. )
206, 19mpan 415 . . . . . . . . . 10  |-  ( v  e.  N.  ->  ( 1o  .o  v )  e. 
N. )
21 pinn 6550 . . . . . . . . . 10  |-  ( ( 1o  .o  v )  e.  N.  ->  ( 1o  .o  v )  e. 
om )
22 nnm0 6112 . . . . . . . . . 10  |-  ( ( 1o  .o  v )  e.  om  ->  (
( 1o  .o  v
)  .o  (/) )  =  (/) )
2320, 21, 223syl 17 . . . . . . . . 9  |-  ( v  e.  N.  ->  (
( 1o  .o  v
)  .o  (/) )  =  (/) )
2423adantl 271 . . . . . . . 8  |-  ( ( w  e.  om  /\  v  e.  N. )  ->  ( ( 1o  .o  v )  .o  (/) )  =  (/) )
2516, 24eqtr4d 2117 . . . . . . 7  |-  ( ( w  e.  om  /\  v  e.  N. )  ->  ( ( (/)  .o  w
)  .o  1o )  =  ( ( 1o 
.o  v )  .o  (/) ) )
2610, 5syl6eqel 2170 . . . . . . . 8  |-  ( w  e.  om  ->  ( (/) 
.o  w )  e. 
om )
27 enq0eceq 6678 . . . . . . . . 9  |-  ( ( ( ( (/)  .o  w
)  e.  om  /\  ( 1o  .o  v
)  e.  N. )  /\  ( (/)  e.  om  /\  1o  e.  N. )
)  ->  ( [ <. ( (/)  .o  w
) ,  ( 1o 
.o  v ) >. ] ~Q0  =  [ <. (/) ,  1o >. ] ~Q0  <->  ( ( (/) 
.o  w )  .o  1o )  =  ( ( 1o  .o  v
)  .o  (/) ) ) )
285, 6, 27mpanr12 430 . . . . . . . 8  |-  ( ( ( (/)  .o  w
)  e.  om  /\  ( 1o  .o  v
)  e.  N. )  ->  ( [ <. ( (/) 
.o  w ) ,  ( 1o  .o  v
) >. ] ~Q0  =  [ <. (/) ,  1o >. ] ~Q0  <->  ( ( (/)  .o  w
)  .o  1o )  =  ( ( 1o 
.o  v )  .o  (/) ) ) )
2926, 20, 28syl2an 283 . . . . . . 7  |-  ( ( w  e.  om  /\  v  e.  N. )  ->  ( [ <. ( (/) 
.o  w ) ,  ( 1o  .o  v
) >. ] ~Q0  =  [ <. (/) ,  1o >. ] ~Q0  <->  ( ( (/)  .o  w
)  .o  1o )  =  ( ( 1o 
.o  v )  .o  (/) ) ) )
3025, 29mpbird 165 . . . . . 6  |-  ( ( w  e.  om  /\  v  e.  N. )  ->  [ <. ( (/)  .o  w
) ,  ( 1o 
.o  v ) >. ] ~Q0  =  [ <. (/) ,  1o >. ] ~Q0  )
3130, 2syl6eqr 2132 . . . . 5  |-  ( ( w  e.  om  /\  v  e.  N. )  ->  [ <. ( (/)  .o  w
) ,  ( 1o 
.o  v ) >. ] ~Q0  = 0Q0 )
3231adantr 270 . . . 4  |-  ( ( ( w  e.  om  /\  v  e.  N. )  /\  A  =  [ <. w ,  v >. ] ~Q0  )  ->  [ <. ( (/) 
.o  w ) ,  ( 1o  .o  v
) >. ] ~Q0  = 0Q0 )
339, 32eqtrd 2114 . . 3  |-  ( ( ( w  e.  om  /\  v  e.  N. )  /\  A  =  [ <. w ,  v >. ] ~Q0  )  ->  (0Q0 ·Q0  A )  = 0Q0 )
3433exlimivv 1818 . 2  |-  ( E. w E. v ( ( w  e.  om  /\  v  e.  N. )  /\  A  =  [ <. w ,  v >. ] ~Q0  )  ->  (0Q0 ·Q0  A )  = 0Q0 )
351, 34syl 14 1  |-  ( A  e. Q0  ->  (0Q0 ·Q0  A )  = 0Q0 )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 102    <-> wb 103    = wceq 1285   E.wex 1422    e. wcel 1434   (/)c0 3252   <.cop 3403   omcom 4333  (class class class)co 5537   1oc1o 6052    .o comu 6057   [cec 6163   N.cnpi 6513    .N cmi 6515   ~Q0 ceq0 6527  Q0cnq0 6528  0Q0c0q0 6529   ·Q0 cmq0 6531
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 577  ax-in2 578  ax-io 663  ax-5 1377  ax-7 1378  ax-gen 1379  ax-ie1 1423  ax-ie2 1424  ax-8 1436  ax-10 1437  ax-11 1438  ax-i12 1439  ax-bndl 1440  ax-4 1441  ax-13 1445  ax-14 1446  ax-17 1460  ax-i9 1464  ax-ial 1468  ax-i5r 1469  ax-ext 2064  ax-coll 3895  ax-sep 3898  ax-nul 3906  ax-pow 3950  ax-pr 3966  ax-un 4190  ax-setind 4282  ax-iinf 4331
This theorem depends on definitions:  df-bi 115  df-dc 777  df-3or 921  df-3an 922  df-tru 1288  df-fal 1291  df-nf 1391  df-sb 1687  df-eu 1945  df-mo 1946  df-clab 2069  df-cleq 2075  df-clel 2078  df-nfc 2209  df-ne 2247  df-ral 2354  df-rex 2355  df-reu 2356  df-rab 2358  df-v 2604  df-sbc 2817  df-csb 2910  df-dif 2976  df-un 2978  df-in 2980  df-ss 2987  df-nul 3253  df-pw 3386  df-sn 3406  df-pr 3407  df-op 3409  df-uni 3604  df-int 3639  df-iun 3682  df-br 3788  df-opab 3842  df-mpt 3843  df-tr 3878  df-id 4050  df-iord 4123  df-on 4125  df-suc 4128  df-iom 4334  df-xp 4371  df-rel 4372  df-cnv 4373  df-co 4374  df-dm 4375  df-rn 4376  df-res 4377  df-ima 4378  df-iota 4891  df-fun 4928  df-fn 4929  df-f 4930  df-f1 4931  df-fo 4932  df-f1o 4933  df-fv 4934  df-ov 5540  df-oprab 5541  df-mpt2 5542  df-1st 5792  df-2nd 5793  df-recs 5948  df-irdg 6013  df-1o 6059  df-oadd 6063  df-omul 6064  df-er 6165  df-ec 6167  df-qs 6171  df-ni 6545  df-mi 6547  df-enq0 6665  df-nq0 6666  df-0nq0 6667  df-mq0 6669
This theorem is referenced by:  prarloclem5  6741
  Copyright terms: Public domain W3C validator