ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  caucvgprprlemelu GIF version

Theorem caucvgprprlemelu 6938
Description: Lemma for caucvgprpr 6964. Membership in the upper cut of the putative limit. (Contributed by Jim Kingdon, 28-Jan-2021.)
Hypothesis
Ref Expression
caucvgprprlemell.lim 𝐿 = ⟨{𝑙Q ∣ ∃𝑟N ⟨{𝑝𝑝 <Q (𝑙 +Q (*Q‘[⟨𝑟, 1𝑜⟩] ~Q ))}, {𝑞 ∣ (𝑙 +Q (*Q‘[⟨𝑟, 1𝑜⟩] ~Q )) <Q 𝑞}⟩<P (𝐹𝑟)}, {𝑢Q ∣ ∃𝑟N ((𝐹𝑟) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑟, 1𝑜⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑟, 1𝑜⟩] ~Q ) <Q 𝑞}⟩)<P ⟨{𝑝𝑝 <Q 𝑢}, {𝑞𝑢 <Q 𝑞}⟩}⟩
Assertion
Ref Expression
caucvgprprlemelu (𝑋 ∈ (2nd𝐿) ↔ (𝑋Q ∧ ∃𝑏N ((𝐹𝑏) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑏, 1𝑜⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑏, 1𝑜⟩] ~Q ) <Q 𝑞}⟩)<P ⟨{𝑝𝑝 <Q 𝑋}, {𝑞𝑋 <Q 𝑞}⟩))
Distinct variable groups:   𝐹,𝑏   𝐹,𝑙,𝑟   𝑢,𝐹,𝑟   𝑋,𝑏,𝑝   𝑋,𝑙,𝑟,𝑝   𝑢,𝑋,𝑝   𝑋,𝑞,𝑏   𝑞,𝑙,𝑟   𝑢,𝑞
Allowed substitution hints:   𝐹(𝑞,𝑝)   𝐿(𝑢,𝑟,𝑞,𝑝,𝑏,𝑙)

Proof of Theorem caucvgprprlemelu
Dummy variable 𝑎 is distinct from all other variables.
StepHypRef Expression
1 breq2 3797 . . . . . . 7 (𝑢 = 𝑋 → (𝑝 <Q 𝑢𝑝 <Q 𝑋))
21abbidv 2197 . . . . . 6 (𝑢 = 𝑋 → {𝑝𝑝 <Q 𝑢} = {𝑝𝑝 <Q 𝑋})
3 breq1 3796 . . . . . . 7 (𝑢 = 𝑋 → (𝑢 <Q 𝑞𝑋 <Q 𝑞))
43abbidv 2197 . . . . . 6 (𝑢 = 𝑋 → {𝑞𝑢 <Q 𝑞} = {𝑞𝑋 <Q 𝑞})
52, 4opeq12d 3586 . . . . 5 (𝑢 = 𝑋 → ⟨{𝑝𝑝 <Q 𝑢}, {𝑞𝑢 <Q 𝑞}⟩ = ⟨{𝑝𝑝 <Q 𝑋}, {𝑞𝑋 <Q 𝑞}⟩)
65breq2d 3805 . . . 4 (𝑢 = 𝑋 → (((𝐹𝑟) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑟, 1𝑜⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑟, 1𝑜⟩] ~Q ) <Q 𝑞}⟩)<P ⟨{𝑝𝑝 <Q 𝑢}, {𝑞𝑢 <Q 𝑞}⟩ ↔ ((𝐹𝑟) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑟, 1𝑜⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑟, 1𝑜⟩] ~Q ) <Q 𝑞}⟩)<P ⟨{𝑝𝑝 <Q 𝑋}, {𝑞𝑋 <Q 𝑞}⟩))
76rexbidv 2370 . . 3 (𝑢 = 𝑋 → (∃𝑟N ((𝐹𝑟) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑟, 1𝑜⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑟, 1𝑜⟩] ~Q ) <Q 𝑞}⟩)<P ⟨{𝑝𝑝 <Q 𝑢}, {𝑞𝑢 <Q 𝑞}⟩ ↔ ∃𝑟N ((𝐹𝑟) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑟, 1𝑜⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑟, 1𝑜⟩] ~Q ) <Q 𝑞}⟩)<P ⟨{𝑝𝑝 <Q 𝑋}, {𝑞𝑋 <Q 𝑞}⟩))
8 caucvgprprlemell.lim . . . . 5 𝐿 = ⟨{𝑙Q ∣ ∃𝑟N ⟨{𝑝𝑝 <Q (𝑙 +Q (*Q‘[⟨𝑟, 1𝑜⟩] ~Q ))}, {𝑞 ∣ (𝑙 +Q (*Q‘[⟨𝑟, 1𝑜⟩] ~Q )) <Q 𝑞}⟩<P (𝐹𝑟)}, {𝑢Q ∣ ∃𝑟N ((𝐹𝑟) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑟, 1𝑜⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑟, 1𝑜⟩] ~Q ) <Q 𝑞}⟩)<P ⟨{𝑝𝑝 <Q 𝑢}, {𝑞𝑢 <Q 𝑞}⟩}⟩
98fveq2i 5212 . . . 4 (2nd𝐿) = (2nd ‘⟨{𝑙Q ∣ ∃𝑟N ⟨{𝑝𝑝 <Q (𝑙 +Q (*Q‘[⟨𝑟, 1𝑜⟩] ~Q ))}, {𝑞 ∣ (𝑙 +Q (*Q‘[⟨𝑟, 1𝑜⟩] ~Q )) <Q 𝑞}⟩<P (𝐹𝑟)}, {𝑢Q ∣ ∃𝑟N ((𝐹𝑟) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑟, 1𝑜⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑟, 1𝑜⟩] ~Q ) <Q 𝑞}⟩)<P ⟨{𝑝𝑝 <Q 𝑢}, {𝑞𝑢 <Q 𝑞}⟩}⟩)
10 nqex 6615 . . . . . 6 Q ∈ V
1110rabex 3930 . . . . 5 {𝑙Q ∣ ∃𝑟N ⟨{𝑝𝑝 <Q (𝑙 +Q (*Q‘[⟨𝑟, 1𝑜⟩] ~Q ))}, {𝑞 ∣ (𝑙 +Q (*Q‘[⟨𝑟, 1𝑜⟩] ~Q )) <Q 𝑞}⟩<P (𝐹𝑟)} ∈ V
1210rabex 3930 . . . . 5 {𝑢Q ∣ ∃𝑟N ((𝐹𝑟) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑟, 1𝑜⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑟, 1𝑜⟩] ~Q ) <Q 𝑞}⟩)<P ⟨{𝑝𝑝 <Q 𝑢}, {𝑞𝑢 <Q 𝑞}⟩} ∈ V
1311, 12op2nd 5805 . . . 4 (2nd ‘⟨{𝑙Q ∣ ∃𝑟N ⟨{𝑝𝑝 <Q (𝑙 +Q (*Q‘[⟨𝑟, 1𝑜⟩] ~Q ))}, {𝑞 ∣ (𝑙 +Q (*Q‘[⟨𝑟, 1𝑜⟩] ~Q )) <Q 𝑞}⟩<P (𝐹𝑟)}, {𝑢Q ∣ ∃𝑟N ((𝐹𝑟) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑟, 1𝑜⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑟, 1𝑜⟩] ~Q ) <Q 𝑞}⟩)<P ⟨{𝑝𝑝 <Q 𝑢}, {𝑞𝑢 <Q 𝑞}⟩}⟩) = {𝑢Q ∣ ∃𝑟N ((𝐹𝑟) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑟, 1𝑜⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑟, 1𝑜⟩] ~Q ) <Q 𝑞}⟩)<P ⟨{𝑝𝑝 <Q 𝑢}, {𝑞𝑢 <Q 𝑞}⟩}
149, 13eqtri 2102 . . 3 (2nd𝐿) = {𝑢Q ∣ ∃𝑟N ((𝐹𝑟) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑟, 1𝑜⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑟, 1𝑜⟩] ~Q ) <Q 𝑞}⟩)<P ⟨{𝑝𝑝 <Q 𝑢}, {𝑞𝑢 <Q 𝑞}⟩}
157, 14elrab2 2752 . 2 (𝑋 ∈ (2nd𝐿) ↔ (𝑋Q ∧ ∃𝑟N ((𝐹𝑟) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑟, 1𝑜⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑟, 1𝑜⟩] ~Q ) <Q 𝑞}⟩)<P ⟨{𝑝𝑝 <Q 𝑋}, {𝑞𝑋 <Q 𝑞}⟩))
16 fveq2 5209 . . . . . . 7 (𝑟 = 𝑎 → (𝐹𝑟) = (𝐹𝑎))
17 opeq1 3578 . . . . . . . . . . . 12 (𝑟 = 𝑎 → ⟨𝑟, 1𝑜⟩ = ⟨𝑎, 1𝑜⟩)
1817eceq1d 6208 . . . . . . . . . . 11 (𝑟 = 𝑎 → [⟨𝑟, 1𝑜⟩] ~Q = [⟨𝑎, 1𝑜⟩] ~Q )
1918fveq2d 5213 . . . . . . . . . 10 (𝑟 = 𝑎 → (*Q‘[⟨𝑟, 1𝑜⟩] ~Q ) = (*Q‘[⟨𝑎, 1𝑜⟩] ~Q ))
2019breq2d 3805 . . . . . . . . 9 (𝑟 = 𝑎 → (𝑝 <Q (*Q‘[⟨𝑟, 1𝑜⟩] ~Q ) ↔ 𝑝 <Q (*Q‘[⟨𝑎, 1𝑜⟩] ~Q )))
2120abbidv 2197 . . . . . . . 8 (𝑟 = 𝑎 → {𝑝𝑝 <Q (*Q‘[⟨𝑟, 1𝑜⟩] ~Q )} = {𝑝𝑝 <Q (*Q‘[⟨𝑎, 1𝑜⟩] ~Q )})
2219breq1d 3803 . . . . . . . . 9 (𝑟 = 𝑎 → ((*Q‘[⟨𝑟, 1𝑜⟩] ~Q ) <Q 𝑞 ↔ (*Q‘[⟨𝑎, 1𝑜⟩] ~Q ) <Q 𝑞))
2322abbidv 2197 . . . . . . . 8 (𝑟 = 𝑎 → {𝑞 ∣ (*Q‘[⟨𝑟, 1𝑜⟩] ~Q ) <Q 𝑞} = {𝑞 ∣ (*Q‘[⟨𝑎, 1𝑜⟩] ~Q ) <Q 𝑞})
2421, 23opeq12d 3586 . . . . . . 7 (𝑟 = 𝑎 → ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑟, 1𝑜⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑟, 1𝑜⟩] ~Q ) <Q 𝑞}⟩ = ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑎, 1𝑜⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑎, 1𝑜⟩] ~Q ) <Q 𝑞}⟩)
2516, 24oveq12d 5561 . . . . . 6 (𝑟 = 𝑎 → ((𝐹𝑟) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑟, 1𝑜⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑟, 1𝑜⟩] ~Q ) <Q 𝑞}⟩) = ((𝐹𝑎) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑎, 1𝑜⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑎, 1𝑜⟩] ~Q ) <Q 𝑞}⟩))
2625breq1d 3803 . . . . 5 (𝑟 = 𝑎 → (((𝐹𝑟) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑟, 1𝑜⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑟, 1𝑜⟩] ~Q ) <Q 𝑞}⟩)<P ⟨{𝑝𝑝 <Q 𝑋}, {𝑞𝑋 <Q 𝑞}⟩ ↔ ((𝐹𝑎) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑎, 1𝑜⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑎, 1𝑜⟩] ~Q ) <Q 𝑞}⟩)<P ⟨{𝑝𝑝 <Q 𝑋}, {𝑞𝑋 <Q 𝑞}⟩))
2726cbvrexv 2579 . . . 4 (∃𝑟N ((𝐹𝑟) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑟, 1𝑜⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑟, 1𝑜⟩] ~Q ) <Q 𝑞}⟩)<P ⟨{𝑝𝑝 <Q 𝑋}, {𝑞𝑋 <Q 𝑞}⟩ ↔ ∃𝑎N ((𝐹𝑎) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑎, 1𝑜⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑎, 1𝑜⟩] ~Q ) <Q 𝑞}⟩)<P ⟨{𝑝𝑝 <Q 𝑋}, {𝑞𝑋 <Q 𝑞}⟩)
28 fveq2 5209 . . . . . . 7 (𝑎 = 𝑏 → (𝐹𝑎) = (𝐹𝑏))
29 opeq1 3578 . . . . . . . . . . . 12 (𝑎 = 𝑏 → ⟨𝑎, 1𝑜⟩ = ⟨𝑏, 1𝑜⟩)
3029eceq1d 6208 . . . . . . . . . . 11 (𝑎 = 𝑏 → [⟨𝑎, 1𝑜⟩] ~Q = [⟨𝑏, 1𝑜⟩] ~Q )
3130fveq2d 5213 . . . . . . . . . 10 (𝑎 = 𝑏 → (*Q‘[⟨𝑎, 1𝑜⟩] ~Q ) = (*Q‘[⟨𝑏, 1𝑜⟩] ~Q ))
3231breq2d 3805 . . . . . . . . 9 (𝑎 = 𝑏 → (𝑝 <Q (*Q‘[⟨𝑎, 1𝑜⟩] ~Q ) ↔ 𝑝 <Q (*Q‘[⟨𝑏, 1𝑜⟩] ~Q )))
3332abbidv 2197 . . . . . . . 8 (𝑎 = 𝑏 → {𝑝𝑝 <Q (*Q‘[⟨𝑎, 1𝑜⟩] ~Q )} = {𝑝𝑝 <Q (*Q‘[⟨𝑏, 1𝑜⟩] ~Q )})
3431breq1d 3803 . . . . . . . . 9 (𝑎 = 𝑏 → ((*Q‘[⟨𝑎, 1𝑜⟩] ~Q ) <Q 𝑞 ↔ (*Q‘[⟨𝑏, 1𝑜⟩] ~Q ) <Q 𝑞))
3534abbidv 2197 . . . . . . . 8 (𝑎 = 𝑏 → {𝑞 ∣ (*Q‘[⟨𝑎, 1𝑜⟩] ~Q ) <Q 𝑞} = {𝑞 ∣ (*Q‘[⟨𝑏, 1𝑜⟩] ~Q ) <Q 𝑞})
3633, 35opeq12d 3586 . . . . . . 7 (𝑎 = 𝑏 → ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑎, 1𝑜⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑎, 1𝑜⟩] ~Q ) <Q 𝑞}⟩ = ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑏, 1𝑜⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑏, 1𝑜⟩] ~Q ) <Q 𝑞}⟩)
3728, 36oveq12d 5561 . . . . . 6 (𝑎 = 𝑏 → ((𝐹𝑎) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑎, 1𝑜⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑎, 1𝑜⟩] ~Q ) <Q 𝑞}⟩) = ((𝐹𝑏) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑏, 1𝑜⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑏, 1𝑜⟩] ~Q ) <Q 𝑞}⟩))
3837breq1d 3803 . . . . 5 (𝑎 = 𝑏 → (((𝐹𝑎) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑎, 1𝑜⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑎, 1𝑜⟩] ~Q ) <Q 𝑞}⟩)<P ⟨{𝑝𝑝 <Q 𝑋}, {𝑞𝑋 <Q 𝑞}⟩ ↔ ((𝐹𝑏) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑏, 1𝑜⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑏, 1𝑜⟩] ~Q ) <Q 𝑞}⟩)<P ⟨{𝑝𝑝 <Q 𝑋}, {𝑞𝑋 <Q 𝑞}⟩))
3938cbvrexv 2579 . . . 4 (∃𝑎N ((𝐹𝑎) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑎, 1𝑜⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑎, 1𝑜⟩] ~Q ) <Q 𝑞}⟩)<P ⟨{𝑝𝑝 <Q 𝑋}, {𝑞𝑋 <Q 𝑞}⟩ ↔ ∃𝑏N ((𝐹𝑏) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑏, 1𝑜⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑏, 1𝑜⟩] ~Q ) <Q 𝑞}⟩)<P ⟨{𝑝𝑝 <Q 𝑋}, {𝑞𝑋 <Q 𝑞}⟩)
4027, 39bitri 182 . . 3 (∃𝑟N ((𝐹𝑟) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑟, 1𝑜⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑟, 1𝑜⟩] ~Q ) <Q 𝑞}⟩)<P ⟨{𝑝𝑝 <Q 𝑋}, {𝑞𝑋 <Q 𝑞}⟩ ↔ ∃𝑏N ((𝐹𝑏) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑏, 1𝑜⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑏, 1𝑜⟩] ~Q ) <Q 𝑞}⟩)<P ⟨{𝑝𝑝 <Q 𝑋}, {𝑞𝑋 <Q 𝑞}⟩)
4140anbi2i 445 . 2 ((𝑋Q ∧ ∃𝑟N ((𝐹𝑟) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑟, 1𝑜⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑟, 1𝑜⟩] ~Q ) <Q 𝑞}⟩)<P ⟨{𝑝𝑝 <Q 𝑋}, {𝑞𝑋 <Q 𝑞}⟩) ↔ (𝑋Q ∧ ∃𝑏N ((𝐹𝑏) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑏, 1𝑜⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑏, 1𝑜⟩] ~Q ) <Q 𝑞}⟩)<P ⟨{𝑝𝑝 <Q 𝑋}, {𝑞𝑋 <Q 𝑞}⟩))
4215, 41bitri 182 1 (𝑋 ∈ (2nd𝐿) ↔ (𝑋Q ∧ ∃𝑏N ((𝐹𝑏) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑏, 1𝑜⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑏, 1𝑜⟩] ~Q ) <Q 𝑞}⟩)<P ⟨{𝑝𝑝 <Q 𝑋}, {𝑞𝑋 <Q 𝑞}⟩))
Colors of variables: wff set class
Syntax hints:  wa 102  wb 103   = wceq 1285  wcel 1434  {cab 2068  wrex 2350  {crab 2353  cop 3409   class class class wbr 3793  cfv 4932  (class class class)co 5543  2nd c2nd 5797  1𝑜c1o 6058  [cec 6170  Ncnpi 6524   ~Q ceq 6531  Qcnq 6532   +Q cplq 6534  *Qcrq 6536   <Q cltq 6537   +P cpp 6545  <P cltp 6547
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 577  ax-in2 578  ax-io 663  ax-5 1377  ax-7 1378  ax-gen 1379  ax-ie1 1423  ax-ie2 1424  ax-8 1436  ax-10 1437  ax-11 1438  ax-i12 1439  ax-bndl 1440  ax-4 1441  ax-13 1445  ax-14 1446  ax-17 1460  ax-i9 1464  ax-ial 1468  ax-i5r 1469  ax-ext 2064  ax-coll 3901  ax-sep 3904  ax-pow 3956  ax-pr 3972  ax-un 4196  ax-iinf 4337
This theorem depends on definitions:  df-bi 115  df-3an 922  df-tru 1288  df-nf 1391  df-sb 1687  df-eu 1945  df-mo 1946  df-clab 2069  df-cleq 2075  df-clel 2078  df-nfc 2209  df-ral 2354  df-rex 2355  df-reu 2356  df-rab 2358  df-v 2604  df-sbc 2817  df-csb 2910  df-dif 2976  df-un 2978  df-in 2980  df-ss 2987  df-pw 3392  df-sn 3412  df-pr 3413  df-op 3415  df-uni 3610  df-int 3645  df-iun 3688  df-br 3794  df-opab 3848  df-mpt 3849  df-id 4056  df-iom 4340  df-xp 4377  df-rel 4378  df-cnv 4379  df-co 4380  df-dm 4381  df-rn 4382  df-res 4383  df-ima 4384  df-iota 4897  df-fun 4934  df-fn 4935  df-f 4936  df-f1 4937  df-fo 4938  df-f1o 4939  df-fv 4940  df-ov 5546  df-2nd 5799  df-ec 6174  df-qs 6178  df-ni 6556  df-nqqs 6600
This theorem is referenced by:  caucvgprprlemopu  6951  caucvgprprlemupu  6952  caucvgprprlemdisj  6954  caucvgprprlemloc  6955
  Copyright terms: Public domain W3C validator