ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  climrecvg1n GIF version

Theorem climrecvg1n 11117
Description: A Cauchy sequence of real numbers converges, existence version. The rate of convergence is fixed: all terms after the nth term must be within 𝐶 / 𝑛 of the nth term, where 𝐶 is a constant multiplier. (Contributed by Jim Kingdon, 23-Aug-2021.)
Hypotheses
Ref Expression
climrecvg1n.f (𝜑𝐹:ℕ⟶ℝ)
climrecvg1n.c (𝜑𝐶 ∈ ℝ+)
climrecvg1n.cau (𝜑 → ∀𝑛 ∈ ℕ ∀𝑘 ∈ (ℤ𝑛)(abs‘((𝐹𝑘) − (𝐹𝑛))) < (𝐶 / 𝑛))
Assertion
Ref Expression
climrecvg1n (𝜑𝐹 ∈ dom ⇝ )
Distinct variable groups:   𝐶,𝑘,𝑛   𝑘,𝐹,𝑛   𝜑,𝑘,𝑛

Proof of Theorem climrecvg1n
Dummy variables 𝑒 𝑖 𝑗 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 climrecvg1n.f . . 3 (𝜑𝐹:ℕ⟶ℝ)
2 climrecvg1n.c . . 3 (𝜑𝐶 ∈ ℝ+)
3 climrecvg1n.cau . . . . . . . . 9 (𝜑 → ∀𝑛 ∈ ℕ ∀𝑘 ∈ (ℤ𝑛)(abs‘((𝐹𝑘) − (𝐹𝑛))) < (𝐶 / 𝑛))
43r19.21bi 2520 . . . . . . . 8 ((𝜑𝑛 ∈ ℕ) → ∀𝑘 ∈ (ℤ𝑛)(abs‘((𝐹𝑘) − (𝐹𝑛))) < (𝐶 / 𝑛))
54r19.21bi 2520 . . . . . . 7 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑛)) → (abs‘((𝐹𝑘) − (𝐹𝑛))) < (𝐶 / 𝑛))
61ad2antrr 479 . . . . . . . . 9 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑛)) → 𝐹:ℕ⟶ℝ)
7 eluznn 9394 . . . . . . . . . 10 ((𝑛 ∈ ℕ ∧ 𝑘 ∈ (ℤ𝑛)) → 𝑘 ∈ ℕ)
87adantll 467 . . . . . . . . 9 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑛)) → 𝑘 ∈ ℕ)
96, 8ffvelrnd 5556 . . . . . . . 8 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑛)) → (𝐹𝑘) ∈ ℝ)
10 simplr 519 . . . . . . . . 9 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑛)) → 𝑛 ∈ ℕ)
116, 10ffvelrnd 5556 . . . . . . . 8 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑛)) → (𝐹𝑛) ∈ ℝ)
122ad2antrr 479 . . . . . . . . . 10 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑛)) → 𝐶 ∈ ℝ+)
1310nnrpd 9482 . . . . . . . . . 10 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑛)) → 𝑛 ∈ ℝ+)
1412, 13rpdivcld 9501 . . . . . . . . 9 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑛)) → (𝐶 / 𝑛) ∈ ℝ+)
1514rpred 9483 . . . . . . . 8 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑛)) → (𝐶 / 𝑛) ∈ ℝ)
169, 11, 15absdifltd 10950 . . . . . . 7 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑛)) → ((abs‘((𝐹𝑘) − (𝐹𝑛))) < (𝐶 / 𝑛) ↔ (((𝐹𝑛) − (𝐶 / 𝑛)) < (𝐹𝑘) ∧ (𝐹𝑘) < ((𝐹𝑛) + (𝐶 / 𝑛)))))
175, 16mpbid 146 . . . . . 6 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑛)) → (((𝐹𝑛) − (𝐶 / 𝑛)) < (𝐹𝑘) ∧ (𝐹𝑘) < ((𝐹𝑛) + (𝐶 / 𝑛))))
1811, 15, 9ltsubaddd 8303 . . . . . . 7 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑛)) → (((𝐹𝑛) − (𝐶 / 𝑛)) < (𝐹𝑘) ↔ (𝐹𝑛) < ((𝐹𝑘) + (𝐶 / 𝑛))))
1918anbi1d 460 . . . . . 6 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑛)) → ((((𝐹𝑛) − (𝐶 / 𝑛)) < (𝐹𝑘) ∧ (𝐹𝑘) < ((𝐹𝑛) + (𝐶 / 𝑛))) ↔ ((𝐹𝑛) < ((𝐹𝑘) + (𝐶 / 𝑛)) ∧ (𝐹𝑘) < ((𝐹𝑛) + (𝐶 / 𝑛)))))
2017, 19mpbid 146 . . . . 5 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑛)) → ((𝐹𝑛) < ((𝐹𝑘) + (𝐶 / 𝑛)) ∧ (𝐹𝑘) < ((𝐹𝑛) + (𝐶 / 𝑛))))
2120ralrimiva 2505 . . . 4 ((𝜑𝑛 ∈ ℕ) → ∀𝑘 ∈ (ℤ𝑛)((𝐹𝑛) < ((𝐹𝑘) + (𝐶 / 𝑛)) ∧ (𝐹𝑘) < ((𝐹𝑛) + (𝐶 / 𝑛))))
2221ralrimiva 2505 . . 3 (𝜑 → ∀𝑛 ∈ ℕ ∀𝑘 ∈ (ℤ𝑛)((𝐹𝑛) < ((𝐹𝑘) + (𝐶 / 𝑛)) ∧ (𝐹𝑘) < ((𝐹𝑛) + (𝐶 / 𝑛))))
231, 2, 22cvg1n 10758 . 2 (𝜑 → ∃𝑦 ∈ ℝ ∀𝑒 ∈ ℝ+𝑖 ∈ ℕ ∀𝑗 ∈ (ℤ𝑖)((𝐹𝑗) < (𝑦 + 𝑒) ∧ 𝑦 < ((𝐹𝑗) + 𝑒)))
241adantr 274 . . . . . . . . . . . 12 ((𝜑𝑦 ∈ ℝ) → 𝐹:ℕ⟶ℝ)
2524ad3antrrr 483 . . . . . . . . . . 11 (((((𝜑𝑦 ∈ ℝ) ∧ 𝑒 ∈ ℝ+) ∧ 𝑖 ∈ ℕ) ∧ 𝑗 ∈ (ℤ𝑖)) → 𝐹:ℕ⟶ℝ)
26 eluznn 9394 . . . . . . . . . . . 12 ((𝑖 ∈ ℕ ∧ 𝑗 ∈ (ℤ𝑖)) → 𝑗 ∈ ℕ)
2726adantll 467 . . . . . . . . . . 11 (((((𝜑𝑦 ∈ ℝ) ∧ 𝑒 ∈ ℝ+) ∧ 𝑖 ∈ ℕ) ∧ 𝑗 ∈ (ℤ𝑖)) → 𝑗 ∈ ℕ)
2825, 27ffvelrnd 5556 . . . . . . . . . 10 (((((𝜑𝑦 ∈ ℝ) ∧ 𝑒 ∈ ℝ+) ∧ 𝑖 ∈ ℕ) ∧ 𝑗 ∈ (ℤ𝑖)) → (𝐹𝑗) ∈ ℝ)
29 simpr 109 . . . . . . . . . . 11 ((𝜑𝑦 ∈ ℝ) → 𝑦 ∈ ℝ)
3029ad3antrrr 483 . . . . . . . . . 10 (((((𝜑𝑦 ∈ ℝ) ∧ 𝑒 ∈ ℝ+) ∧ 𝑖 ∈ ℕ) ∧ 𝑗 ∈ (ℤ𝑖)) → 𝑦 ∈ ℝ)
31 simpllr 523 . . . . . . . . . . 11 (((((𝜑𝑦 ∈ ℝ) ∧ 𝑒 ∈ ℝ+) ∧ 𝑖 ∈ ℕ) ∧ 𝑗 ∈ (ℤ𝑖)) → 𝑒 ∈ ℝ+)
3231rpred 9483 . . . . . . . . . 10 (((((𝜑𝑦 ∈ ℝ) ∧ 𝑒 ∈ ℝ+) ∧ 𝑖 ∈ ℕ) ∧ 𝑗 ∈ (ℤ𝑖)) → 𝑒 ∈ ℝ)
3328, 30, 32absdifltd 10950 . . . . . . . . 9 (((((𝜑𝑦 ∈ ℝ) ∧ 𝑒 ∈ ℝ+) ∧ 𝑖 ∈ ℕ) ∧ 𝑗 ∈ (ℤ𝑖)) → ((abs‘((𝐹𝑗) − 𝑦)) < 𝑒 ↔ ((𝑦𝑒) < (𝐹𝑗) ∧ (𝐹𝑗) < (𝑦 + 𝑒))))
3430, 32, 28ltsubaddd 8303 . . . . . . . . . 10 (((((𝜑𝑦 ∈ ℝ) ∧ 𝑒 ∈ ℝ+) ∧ 𝑖 ∈ ℕ) ∧ 𝑗 ∈ (ℤ𝑖)) → ((𝑦𝑒) < (𝐹𝑗) ↔ 𝑦 < ((𝐹𝑗) + 𝑒)))
3534anbi1d 460 . . . . . . . . 9 (((((𝜑𝑦 ∈ ℝ) ∧ 𝑒 ∈ ℝ+) ∧ 𝑖 ∈ ℕ) ∧ 𝑗 ∈ (ℤ𝑖)) → (((𝑦𝑒) < (𝐹𝑗) ∧ (𝐹𝑗) < (𝑦 + 𝑒)) ↔ (𝑦 < ((𝐹𝑗) + 𝑒) ∧ (𝐹𝑗) < (𝑦 + 𝑒))))
3633, 35bitrd 187 . . . . . . . 8 (((((𝜑𝑦 ∈ ℝ) ∧ 𝑒 ∈ ℝ+) ∧ 𝑖 ∈ ℕ) ∧ 𝑗 ∈ (ℤ𝑖)) → ((abs‘((𝐹𝑗) − 𝑦)) < 𝑒 ↔ (𝑦 < ((𝐹𝑗) + 𝑒) ∧ (𝐹𝑗) < (𝑦 + 𝑒))))
37 ancom 264 . . . . . . . 8 ((𝑦 < ((𝐹𝑗) + 𝑒) ∧ (𝐹𝑗) < (𝑦 + 𝑒)) ↔ ((𝐹𝑗) < (𝑦 + 𝑒) ∧ 𝑦 < ((𝐹𝑗) + 𝑒)))
3836, 37syl6bb 195 . . . . . . 7 (((((𝜑𝑦 ∈ ℝ) ∧ 𝑒 ∈ ℝ+) ∧ 𝑖 ∈ ℕ) ∧ 𝑗 ∈ (ℤ𝑖)) → ((abs‘((𝐹𝑗) − 𝑦)) < 𝑒 ↔ ((𝐹𝑗) < (𝑦 + 𝑒) ∧ 𝑦 < ((𝐹𝑗) + 𝑒))))
3938ralbidva 2433 . . . . . 6 ((((𝜑𝑦 ∈ ℝ) ∧ 𝑒 ∈ ℝ+) ∧ 𝑖 ∈ ℕ) → (∀𝑗 ∈ (ℤ𝑖)(abs‘((𝐹𝑗) − 𝑦)) < 𝑒 ↔ ∀𝑗 ∈ (ℤ𝑖)((𝐹𝑗) < (𝑦 + 𝑒) ∧ 𝑦 < ((𝐹𝑗) + 𝑒))))
4039rexbidva 2434 . . . . 5 (((𝜑𝑦 ∈ ℝ) ∧ 𝑒 ∈ ℝ+) → (∃𝑖 ∈ ℕ ∀𝑗 ∈ (ℤ𝑖)(abs‘((𝐹𝑗) − 𝑦)) < 𝑒 ↔ ∃𝑖 ∈ ℕ ∀𝑗 ∈ (ℤ𝑖)((𝐹𝑗) < (𝑦 + 𝑒) ∧ 𝑦 < ((𝐹𝑗) + 𝑒))))
4140ralbidva 2433 . . . 4 ((𝜑𝑦 ∈ ℝ) → (∀𝑒 ∈ ℝ+𝑖 ∈ ℕ ∀𝑗 ∈ (ℤ𝑖)(abs‘((𝐹𝑗) − 𝑦)) < 𝑒 ↔ ∀𝑒 ∈ ℝ+𝑖 ∈ ℕ ∀𝑗 ∈ (ℤ𝑖)((𝐹𝑗) < (𝑦 + 𝑒) ∧ 𝑦 < ((𝐹𝑗) + 𝑒))))
42 nnuz 9361 . . . . . 6 ℕ = (ℤ‘1)
43 1zzd 9081 . . . . . 6 ((𝜑𝑦 ∈ ℝ) → 1 ∈ ℤ)
44 nnex 8726 . . . . . . . 8 ℕ ∈ V
4544a1i 9 . . . . . . 7 ((𝜑𝑦 ∈ ℝ) → ℕ ∈ V)
46 reex 7754 . . . . . . . 8 ℝ ∈ V
4746a1i 9 . . . . . . 7 ((𝜑𝑦 ∈ ℝ) → ℝ ∈ V)
48 fex2 5291 . . . . . . 7 ((𝐹:ℕ⟶ℝ ∧ ℕ ∈ V ∧ ℝ ∈ V) → 𝐹 ∈ V)
4924, 45, 47, 48syl3anc 1216 . . . . . 6 ((𝜑𝑦 ∈ ℝ) → 𝐹 ∈ V)
50 eqidd 2140 . . . . . 6 (((𝜑𝑦 ∈ ℝ) ∧ 𝑗 ∈ ℕ) → (𝐹𝑗) = (𝐹𝑗))
5129recnd 7794 . . . . . 6 ((𝜑𝑦 ∈ ℝ) → 𝑦 ∈ ℂ)
5224ffvelrnda 5555 . . . . . . 7 (((𝜑𝑦 ∈ ℝ) ∧ 𝑗 ∈ ℕ) → (𝐹𝑗) ∈ ℝ)
5352recnd 7794 . . . . . 6 (((𝜑𝑦 ∈ ℝ) ∧ 𝑗 ∈ ℕ) → (𝐹𝑗) ∈ ℂ)
5442, 43, 49, 50, 51, 53clim2c 11053 . . . . 5 ((𝜑𝑦 ∈ ℝ) → (𝐹𝑦 ↔ ∀𝑒 ∈ ℝ+𝑖 ∈ ℕ ∀𝑗 ∈ (ℤ𝑖)(abs‘((𝐹𝑗) − 𝑦)) < 𝑒))
55 climrel 11049 . . . . . 6 Rel ⇝
5655releldmi 4778 . . . . 5 (𝐹𝑦𝐹 ∈ dom ⇝ )
5754, 56syl6bir 163 . . . 4 ((𝜑𝑦 ∈ ℝ) → (∀𝑒 ∈ ℝ+𝑖 ∈ ℕ ∀𝑗 ∈ (ℤ𝑖)(abs‘((𝐹𝑗) − 𝑦)) < 𝑒𝐹 ∈ dom ⇝ ))
5841, 57sylbird 169 . . 3 ((𝜑𝑦 ∈ ℝ) → (∀𝑒 ∈ ℝ+𝑖 ∈ ℕ ∀𝑗 ∈ (ℤ𝑖)((𝐹𝑗) < (𝑦 + 𝑒) ∧ 𝑦 < ((𝐹𝑗) + 𝑒)) → 𝐹 ∈ dom ⇝ ))
5958impr 376 . 2 ((𝜑 ∧ (𝑦 ∈ ℝ ∧ ∀𝑒 ∈ ℝ+𝑖 ∈ ℕ ∀𝑗 ∈ (ℤ𝑖)((𝐹𝑗) < (𝑦 + 𝑒) ∧ 𝑦 < ((𝐹𝑗) + 𝑒)))) → 𝐹 ∈ dom ⇝ )
6023, 59rexlimddv 2554 1 (𝜑𝐹 ∈ dom ⇝ )
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wcel 1480  wral 2416  wrex 2417  Vcvv 2686   class class class wbr 3929  dom cdm 4539  wf 5119  cfv 5123  (class class class)co 5774  cr 7619  1c1 7621   + caddc 7623   < clt 7800  cmin 7933   / cdiv 8432  cn 8720  cuz 9326  +crp 9441  abscabs 10769  cli 11047
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-13 1491  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2121  ax-coll 4043  ax-sep 4046  ax-nul 4054  ax-pow 4098  ax-pr 4131  ax-un 4355  ax-setind 4452  ax-iinf 4502  ax-cnex 7711  ax-resscn 7712  ax-1cn 7713  ax-1re 7714  ax-icn 7715  ax-addcl 7716  ax-addrcl 7717  ax-mulcl 7718  ax-mulrcl 7719  ax-addcom 7720  ax-mulcom 7721  ax-addass 7722  ax-mulass 7723  ax-distr 7724  ax-i2m1 7725  ax-0lt1 7726  ax-1rid 7727  ax-0id 7728  ax-rnegex 7729  ax-precex 7730  ax-cnre 7731  ax-pre-ltirr 7732  ax-pre-ltwlin 7733  ax-pre-lttrn 7734  ax-pre-apti 7735  ax-pre-ltadd 7736  ax-pre-mulgt0 7737  ax-pre-mulext 7738  ax-arch 7739  ax-caucvg 7740
This theorem depends on definitions:  df-bi 116  df-dc 820  df-3or 963  df-3an 964  df-tru 1334  df-fal 1337  df-nf 1437  df-sb 1736  df-eu 2002  df-mo 2003  df-clab 2126  df-cleq 2132  df-clel 2135  df-nfc 2270  df-ne 2309  df-nel 2404  df-ral 2421  df-rex 2422  df-reu 2423  df-rmo 2424  df-rab 2425  df-v 2688  df-sbc 2910  df-csb 3004  df-dif 3073  df-un 3075  df-in 3077  df-ss 3084  df-nul 3364  df-if 3475  df-pw 3512  df-sn 3533  df-pr 3534  df-op 3536  df-uni 3737  df-int 3772  df-iun 3815  df-br 3930  df-opab 3990  df-mpt 3991  df-tr 4027  df-id 4215  df-po 4218  df-iso 4219  df-iord 4288  df-on 4290  df-ilim 4291  df-suc 4293  df-iom 4505  df-xp 4545  df-rel 4546  df-cnv 4547  df-co 4548  df-dm 4549  df-rn 4550  df-res 4551  df-ima 4552  df-iota 5088  df-fun 5125  df-fn 5126  df-f 5127  df-f1 5128  df-fo 5129  df-f1o 5130  df-fv 5131  df-riota 5730  df-ov 5777  df-oprab 5778  df-mpo 5779  df-1st 6038  df-2nd 6039  df-recs 6202  df-frec 6288  df-pnf 7802  df-mnf 7803  df-xr 7804  df-ltxr 7805  df-le 7806  df-sub 7935  df-neg 7936  df-reap 8337  df-ap 8344  df-div 8433  df-inn 8721  df-2 8779  df-3 8780  df-4 8781  df-n0 8978  df-z 9055  df-uz 9327  df-rp 9442  df-seqfrec 10219  df-exp 10293  df-cj 10614  df-re 10615  df-im 10616  df-rsqrt 10770  df-abs 10771  df-clim 11048
This theorem is referenced by:  climcvg1nlem  11118
  Copyright terms: Public domain W3C validator