ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  climrecvg1n GIF version

Theorem climrecvg1n 10098
Description: A Cauchy sequence of real numbers converges, existence version. The rate of convergence is fixed: all terms after the nth term must be within 𝐶 / 𝑛 of the nth term, where 𝐶 is a constant multiplier. (Contributed by Jim Kingdon, 23-Aug-2021.)
Hypotheses
Ref Expression
climrecvg1n.f (𝜑𝐹:ℕ⟶ℝ)
climrecvg1n.c (𝜑𝐶 ∈ ℝ+)
climrecvg1n.cau (𝜑 → ∀𝑛 ∈ ℕ ∀𝑘 ∈ (ℤ𝑛)(abs‘((𝐹𝑘) − (𝐹𝑛))) < (𝐶 / 𝑛))
Assertion
Ref Expression
climrecvg1n (𝜑𝐹 ∈ dom ⇝ )
Distinct variable groups:   𝐶,𝑘,𝑛   𝑘,𝐹,𝑛   𝜑,𝑘,𝑛

Proof of Theorem climrecvg1n
Dummy variables 𝑒 𝑖 𝑗 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 climrecvg1n.f . . 3 (𝜑𝐹:ℕ⟶ℝ)
2 climrecvg1n.c . . 3 (𝜑𝐶 ∈ ℝ+)
3 climrecvg1n.cau . . . . . . . . 9 (𝜑 → ∀𝑛 ∈ ℕ ∀𝑘 ∈ (ℤ𝑛)(abs‘((𝐹𝑘) − (𝐹𝑛))) < (𝐶 / 𝑛))
43r19.21bi 2424 . . . . . . . 8 ((𝜑𝑛 ∈ ℕ) → ∀𝑘 ∈ (ℤ𝑛)(abs‘((𝐹𝑘) − (𝐹𝑛))) < (𝐶 / 𝑛))
54r19.21bi 2424 . . . . . . 7 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑛)) → (abs‘((𝐹𝑘) − (𝐹𝑛))) < (𝐶 / 𝑛))
61ad2antrr 465 . . . . . . . . 9 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑛)) → 𝐹:ℕ⟶ℝ)
7 eluznn 8634 . . . . . . . . . 10 ((𝑛 ∈ ℕ ∧ 𝑘 ∈ (ℤ𝑛)) → 𝑘 ∈ ℕ)
87adantll 453 . . . . . . . . 9 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑛)) → 𝑘 ∈ ℕ)
96, 8ffvelrnd 5331 . . . . . . . 8 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑛)) → (𝐹𝑘) ∈ ℝ)
10 simplr 490 . . . . . . . . 9 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑛)) → 𝑛 ∈ ℕ)
116, 10ffvelrnd 5331 . . . . . . . 8 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑛)) → (𝐹𝑛) ∈ ℝ)
122ad2antrr 465 . . . . . . . . . 10 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑛)) → 𝐶 ∈ ℝ+)
1310nnrpd 8719 . . . . . . . . . 10 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑛)) → 𝑛 ∈ ℝ+)
1412, 13rpdivcld 8738 . . . . . . . . 9 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑛)) → (𝐶 / 𝑛) ∈ ℝ+)
1514rpred 8720 . . . . . . . 8 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑛)) → (𝐶 / 𝑛) ∈ ℝ)
169, 11, 15absdifltd 10005 . . . . . . 7 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑛)) → ((abs‘((𝐹𝑘) − (𝐹𝑛))) < (𝐶 / 𝑛) ↔ (((𝐹𝑛) − (𝐶 / 𝑛)) < (𝐹𝑘) ∧ (𝐹𝑘) < ((𝐹𝑛) + (𝐶 / 𝑛)))))
175, 16mpbid 139 . . . . . 6 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑛)) → (((𝐹𝑛) − (𝐶 / 𝑛)) < (𝐹𝑘) ∧ (𝐹𝑘) < ((𝐹𝑛) + (𝐶 / 𝑛))))
1811, 15, 9ltsubaddd 7606 . . . . . . 7 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑛)) → (((𝐹𝑛) − (𝐶 / 𝑛)) < (𝐹𝑘) ↔ (𝐹𝑛) < ((𝐹𝑘) + (𝐶 / 𝑛))))
1918anbi1d 446 . . . . . 6 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑛)) → ((((𝐹𝑛) − (𝐶 / 𝑛)) < (𝐹𝑘) ∧ (𝐹𝑘) < ((𝐹𝑛) + (𝐶 / 𝑛))) ↔ ((𝐹𝑛) < ((𝐹𝑘) + (𝐶 / 𝑛)) ∧ (𝐹𝑘) < ((𝐹𝑛) + (𝐶 / 𝑛)))))
2017, 19mpbid 139 . . . . 5 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑛)) → ((𝐹𝑛) < ((𝐹𝑘) + (𝐶 / 𝑛)) ∧ (𝐹𝑘) < ((𝐹𝑛) + (𝐶 / 𝑛))))
2120ralrimiva 2409 . . . 4 ((𝜑𝑛 ∈ ℕ) → ∀𝑘 ∈ (ℤ𝑛)((𝐹𝑛) < ((𝐹𝑘) + (𝐶 / 𝑛)) ∧ (𝐹𝑘) < ((𝐹𝑛) + (𝐶 / 𝑛))))
2221ralrimiva 2409 . . 3 (𝜑 → ∀𝑛 ∈ ℕ ∀𝑘 ∈ (ℤ𝑛)((𝐹𝑛) < ((𝐹𝑘) + (𝐶 / 𝑛)) ∧ (𝐹𝑘) < ((𝐹𝑛) + (𝐶 / 𝑛))))
231, 2, 22cvg1n 9813 . 2 (𝜑 → ∃𝑦 ∈ ℝ ∀𝑒 ∈ ℝ+𝑖 ∈ ℕ ∀𝑗 ∈ (ℤ𝑖)((𝐹𝑗) < (𝑦 + 𝑒) ∧ 𝑦 < ((𝐹𝑗) + 𝑒)))
241adantr 265 . . . . . . . . . . . 12 ((𝜑𝑦 ∈ ℝ) → 𝐹:ℕ⟶ℝ)
2524ad3antrrr 469 . . . . . . . . . . 11 (((((𝜑𝑦 ∈ ℝ) ∧ 𝑒 ∈ ℝ+) ∧ 𝑖 ∈ ℕ) ∧ 𝑗 ∈ (ℤ𝑖)) → 𝐹:ℕ⟶ℝ)
26 eluznn 8634 . . . . . . . . . . . 12 ((𝑖 ∈ ℕ ∧ 𝑗 ∈ (ℤ𝑖)) → 𝑗 ∈ ℕ)
2726adantll 453 . . . . . . . . . . 11 (((((𝜑𝑦 ∈ ℝ) ∧ 𝑒 ∈ ℝ+) ∧ 𝑖 ∈ ℕ) ∧ 𝑗 ∈ (ℤ𝑖)) → 𝑗 ∈ ℕ)
2825, 27ffvelrnd 5331 . . . . . . . . . 10 (((((𝜑𝑦 ∈ ℝ) ∧ 𝑒 ∈ ℝ+) ∧ 𝑖 ∈ ℕ) ∧ 𝑗 ∈ (ℤ𝑖)) → (𝐹𝑗) ∈ ℝ)
29 simpr 107 . . . . . . . . . . 11 ((𝜑𝑦 ∈ ℝ) → 𝑦 ∈ ℝ)
3029ad3antrrr 469 . . . . . . . . . 10 (((((𝜑𝑦 ∈ ℝ) ∧ 𝑒 ∈ ℝ+) ∧ 𝑖 ∈ ℕ) ∧ 𝑗 ∈ (ℤ𝑖)) → 𝑦 ∈ ℝ)
31 simpllr 494 . . . . . . . . . . 11 (((((𝜑𝑦 ∈ ℝ) ∧ 𝑒 ∈ ℝ+) ∧ 𝑖 ∈ ℕ) ∧ 𝑗 ∈ (ℤ𝑖)) → 𝑒 ∈ ℝ+)
3231rpred 8720 . . . . . . . . . 10 (((((𝜑𝑦 ∈ ℝ) ∧ 𝑒 ∈ ℝ+) ∧ 𝑖 ∈ ℕ) ∧ 𝑗 ∈ (ℤ𝑖)) → 𝑒 ∈ ℝ)
3328, 30, 32absdifltd 10005 . . . . . . . . 9 (((((𝜑𝑦 ∈ ℝ) ∧ 𝑒 ∈ ℝ+) ∧ 𝑖 ∈ ℕ) ∧ 𝑗 ∈ (ℤ𝑖)) → ((abs‘((𝐹𝑗) − 𝑦)) < 𝑒 ↔ ((𝑦𝑒) < (𝐹𝑗) ∧ (𝐹𝑗) < (𝑦 + 𝑒))))
3430, 32, 28ltsubaddd 7606 . . . . . . . . . 10 (((((𝜑𝑦 ∈ ℝ) ∧ 𝑒 ∈ ℝ+) ∧ 𝑖 ∈ ℕ) ∧ 𝑗 ∈ (ℤ𝑖)) → ((𝑦𝑒) < (𝐹𝑗) ↔ 𝑦 < ((𝐹𝑗) + 𝑒)))
3534anbi1d 446 . . . . . . . . 9 (((((𝜑𝑦 ∈ ℝ) ∧ 𝑒 ∈ ℝ+) ∧ 𝑖 ∈ ℕ) ∧ 𝑗 ∈ (ℤ𝑖)) → (((𝑦𝑒) < (𝐹𝑗) ∧ (𝐹𝑗) < (𝑦 + 𝑒)) ↔ (𝑦 < ((𝐹𝑗) + 𝑒) ∧ (𝐹𝑗) < (𝑦 + 𝑒))))
3633, 35bitrd 181 . . . . . . . 8 (((((𝜑𝑦 ∈ ℝ) ∧ 𝑒 ∈ ℝ+) ∧ 𝑖 ∈ ℕ) ∧ 𝑗 ∈ (ℤ𝑖)) → ((abs‘((𝐹𝑗) − 𝑦)) < 𝑒 ↔ (𝑦 < ((𝐹𝑗) + 𝑒) ∧ (𝐹𝑗) < (𝑦 + 𝑒))))
37 ancom 257 . . . . . . . 8 ((𝑦 < ((𝐹𝑗) + 𝑒) ∧ (𝐹𝑗) < (𝑦 + 𝑒)) ↔ ((𝐹𝑗) < (𝑦 + 𝑒) ∧ 𝑦 < ((𝐹𝑗) + 𝑒)))
3836, 37syl6bb 189 . . . . . . 7 (((((𝜑𝑦 ∈ ℝ) ∧ 𝑒 ∈ ℝ+) ∧ 𝑖 ∈ ℕ) ∧ 𝑗 ∈ (ℤ𝑖)) → ((abs‘((𝐹𝑗) − 𝑦)) < 𝑒 ↔ ((𝐹𝑗) < (𝑦 + 𝑒) ∧ 𝑦 < ((𝐹𝑗) + 𝑒))))
3938ralbidva 2339 . . . . . 6 ((((𝜑𝑦 ∈ ℝ) ∧ 𝑒 ∈ ℝ+) ∧ 𝑖 ∈ ℕ) → (∀𝑗 ∈ (ℤ𝑖)(abs‘((𝐹𝑗) − 𝑦)) < 𝑒 ↔ ∀𝑗 ∈ (ℤ𝑖)((𝐹𝑗) < (𝑦 + 𝑒) ∧ 𝑦 < ((𝐹𝑗) + 𝑒))))
4039rexbidva 2340 . . . . 5 (((𝜑𝑦 ∈ ℝ) ∧ 𝑒 ∈ ℝ+) → (∃𝑖 ∈ ℕ ∀𝑗 ∈ (ℤ𝑖)(abs‘((𝐹𝑗) − 𝑦)) < 𝑒 ↔ ∃𝑖 ∈ ℕ ∀𝑗 ∈ (ℤ𝑖)((𝐹𝑗) < (𝑦 + 𝑒) ∧ 𝑦 < ((𝐹𝑗) + 𝑒))))
4140ralbidva 2339 . . . 4 ((𝜑𝑦 ∈ ℝ) → (∀𝑒 ∈ ℝ+𝑖 ∈ ℕ ∀𝑗 ∈ (ℤ𝑖)(abs‘((𝐹𝑗) − 𝑦)) < 𝑒 ↔ ∀𝑒 ∈ ℝ+𝑖 ∈ ℕ ∀𝑗 ∈ (ℤ𝑖)((𝐹𝑗) < (𝑦 + 𝑒) ∧ 𝑦 < ((𝐹𝑗) + 𝑒))))
42 nnuz 8604 . . . . . 6 ℕ = (ℤ‘1)
43 1zzd 8329 . . . . . 6 ((𝜑𝑦 ∈ ℝ) → 1 ∈ ℤ)
44 nnex 7996 . . . . . . . 8 ℕ ∈ V
4544a1i 9 . . . . . . 7 ((𝜑𝑦 ∈ ℝ) → ℕ ∈ V)
46 reex 7073 . . . . . . . 8 ℝ ∈ V
4746a1i 9 . . . . . . 7 ((𝜑𝑦 ∈ ℝ) → ℝ ∈ V)
48 fex2 5087 . . . . . . 7 ((𝐹:ℕ⟶ℝ ∧ ℕ ∈ V ∧ ℝ ∈ V) → 𝐹 ∈ V)
4924, 45, 47, 48syl3anc 1146 . . . . . 6 ((𝜑𝑦 ∈ ℝ) → 𝐹 ∈ V)
50 eqidd 2057 . . . . . 6 (((𝜑𝑦 ∈ ℝ) ∧ 𝑗 ∈ ℕ) → (𝐹𝑗) = (𝐹𝑗))
5129recnd 7113 . . . . . 6 ((𝜑𝑦 ∈ ℝ) → 𝑦 ∈ ℂ)
5224ffvelrnda 5330 . . . . . . 7 (((𝜑𝑦 ∈ ℝ) ∧ 𝑗 ∈ ℕ) → (𝐹𝑗) ∈ ℝ)
5352recnd 7113 . . . . . 6 (((𝜑𝑦 ∈ ℝ) ∧ 𝑗 ∈ ℕ) → (𝐹𝑗) ∈ ℂ)
5442, 43, 49, 50, 51, 53clim2c 10036 . . . . 5 ((𝜑𝑦 ∈ ℝ) → (𝐹𝑦 ↔ ∀𝑒 ∈ ℝ+𝑖 ∈ ℕ ∀𝑗 ∈ (ℤ𝑖)(abs‘((𝐹𝑗) − 𝑦)) < 𝑒))
55 climrel 10032 . . . . . 6 Rel ⇝
5655releldmi 4601 . . . . 5 (𝐹𝑦𝐹 ∈ dom ⇝ )
5754, 56syl6bir 157 . . . 4 ((𝜑𝑦 ∈ ℝ) → (∀𝑒 ∈ ℝ+𝑖 ∈ ℕ ∀𝑗 ∈ (ℤ𝑖)(abs‘((𝐹𝑗) − 𝑦)) < 𝑒𝐹 ∈ dom ⇝ ))
5841, 57sylbird 163 . . 3 ((𝜑𝑦 ∈ ℝ) → (∀𝑒 ∈ ℝ+𝑖 ∈ ℕ ∀𝑗 ∈ (ℤ𝑖)((𝐹𝑗) < (𝑦 + 𝑒) ∧ 𝑦 < ((𝐹𝑗) + 𝑒)) → 𝐹 ∈ dom ⇝ ))
5958impr 365 . 2 ((𝜑 ∧ (𝑦 ∈ ℝ ∧ ∀𝑒 ∈ ℝ+𝑖 ∈ ℕ ∀𝑗 ∈ (ℤ𝑖)((𝐹𝑗) < (𝑦 + 𝑒) ∧ 𝑦 < ((𝐹𝑗) + 𝑒)))) → 𝐹 ∈ dom ⇝ )
6023, 59rexlimddv 2454 1 (𝜑𝐹 ∈ dom ⇝ )
Colors of variables: wff set class
Syntax hints:  wi 4  wa 101  wcel 1409  wral 2323  wrex 2324  Vcvv 2574   class class class wbr 3792  dom cdm 4373  wf 4926  cfv 4930  (class class class)co 5540  cr 6946  1c1 6948   + caddc 6950   < clt 7119  cmin 7245   / cdiv 7725  cn 7990  cuz 8569  +crp 8681  abscabs 9824  cli 10030
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 103  ax-ia2 104  ax-ia3 105  ax-in1 554  ax-in2 555  ax-io 640  ax-5 1352  ax-7 1353  ax-gen 1354  ax-ie1 1398  ax-ie2 1399  ax-8 1411  ax-10 1412  ax-11 1413  ax-i12 1414  ax-bndl 1415  ax-4 1416  ax-13 1420  ax-14 1421  ax-17 1435  ax-i9 1439  ax-ial 1443  ax-i5r 1444  ax-ext 2038  ax-coll 3900  ax-sep 3903  ax-nul 3911  ax-pow 3955  ax-pr 3972  ax-un 4198  ax-setind 4290  ax-iinf 4339  ax-cnex 7033  ax-resscn 7034  ax-1cn 7035  ax-1re 7036  ax-icn 7037  ax-addcl 7038  ax-addrcl 7039  ax-mulcl 7040  ax-mulrcl 7041  ax-addcom 7042  ax-mulcom 7043  ax-addass 7044  ax-mulass 7045  ax-distr 7046  ax-i2m1 7047  ax-1rid 7049  ax-0id 7050  ax-rnegex 7051  ax-precex 7052  ax-cnre 7053  ax-pre-ltirr 7054  ax-pre-ltwlin 7055  ax-pre-lttrn 7056  ax-pre-apti 7057  ax-pre-ltadd 7058  ax-pre-mulgt0 7059  ax-pre-mulext 7060  ax-arch 7061  ax-caucvg 7062
This theorem depends on definitions:  df-bi 114  df-dc 754  df-3or 897  df-3an 898  df-tru 1262  df-fal 1265  df-nf 1366  df-sb 1662  df-eu 1919  df-mo 1920  df-clab 2043  df-cleq 2049  df-clel 2052  df-nfc 2183  df-ne 2221  df-nel 2315  df-ral 2328  df-rex 2329  df-reu 2330  df-rmo 2331  df-rab 2332  df-v 2576  df-sbc 2788  df-csb 2881  df-dif 2948  df-un 2950  df-in 2952  df-ss 2959  df-nul 3253  df-if 3360  df-pw 3389  df-sn 3409  df-pr 3410  df-op 3412  df-uni 3609  df-int 3644  df-iun 3687  df-br 3793  df-opab 3847  df-mpt 3848  df-tr 3883  df-eprel 4054  df-id 4058  df-po 4061  df-iso 4062  df-iord 4131  df-on 4133  df-suc 4136  df-iom 4342  df-xp 4379  df-rel 4380  df-cnv 4381  df-co 4382  df-dm 4383  df-rn 4384  df-res 4385  df-ima 4386  df-iota 4895  df-fun 4932  df-fn 4933  df-f 4934  df-f1 4935  df-fo 4936  df-f1o 4937  df-fv 4938  df-riota 5496  df-ov 5543  df-oprab 5544  df-mpt2 5545  df-1st 5795  df-2nd 5796  df-recs 5951  df-irdg 5988  df-frec 6009  df-1o 6032  df-2o 6033  df-oadd 6036  df-omul 6037  df-er 6137  df-ec 6139  df-qs 6143  df-ni 6460  df-pli 6461  df-mi 6462  df-lti 6463  df-plpq 6500  df-mpq 6501  df-enq 6503  df-nqqs 6504  df-plqqs 6505  df-mqqs 6506  df-1nqqs 6507  df-rq 6508  df-ltnqqs 6509  df-enq0 6580  df-nq0 6581  df-0nq0 6582  df-plq0 6583  df-mq0 6584  df-inp 6622  df-i1p 6623  df-iplp 6624  df-iltp 6626  df-enr 6869  df-nr 6870  df-ltr 6873  df-0r 6874  df-1r 6875  df-0 6954  df-1 6955  df-r 6957  df-lt 6960  df-pnf 7121  df-mnf 7122  df-xr 7123  df-ltxr 7124  df-le 7125  df-sub 7247  df-neg 7248  df-reap 7640  df-ap 7647  df-div 7726  df-inn 7991  df-2 8049  df-3 8050  df-4 8051  df-n0 8240  df-z 8303  df-uz 8570  df-rp 8682  df-iseq 9376  df-iexp 9420  df-cj 9670  df-re 9671  df-im 9672  df-rsqrt 9825  df-abs 9826  df-clim 10031
This theorem is referenced by:  climcvg1nlem  10099
  Copyright terms: Public domain W3C validator