ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  frecuzrdg0 GIF version

Theorem frecuzrdg0 9495
Description: Initial value of a recursive definition generator on upper integers. See comment in frec2uz0d 9481 for the description of 𝐺 as the mapping from ω to (ℤ𝐶). (Contributed by Jim Kingdon, 27-May-2020.)
Hypotheses
Ref Expression
frec2uz.1 (𝜑𝐶 ∈ ℤ)
frec2uz.2 𝐺 = frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 𝐶)
frecuzrdgrrn.a (𝜑𝐴𝑆)
frecuzrdgrrn.f ((𝜑 ∧ (𝑥 ∈ (ℤ𝐶) ∧ 𝑦𝑆)) → (𝑥𝐹𝑦) ∈ 𝑆)
frecuzrdgrrn.2 𝑅 = frec((𝑥 ∈ (ℤ𝐶), 𝑦𝑆 ↦ ⟨(𝑥 + 1), (𝑥𝐹𝑦)⟩), ⟨𝐶, 𝐴⟩)
frecuzrdgtcl.3 (𝜑𝑇 = ran 𝑅)
Assertion
Ref Expression
frecuzrdg0 (𝜑 → (𝑇𝐶) = 𝐴)
Distinct variable groups:   𝑦,𝐴   𝑥,𝐶,𝑦   𝑦,𝐺   𝑥,𝐹,𝑦   𝑥,𝑆,𝑦   𝜑,𝑥,𝑦
Allowed substitution hints:   𝐴(𝑥)   𝑅(𝑥,𝑦)   𝑇(𝑥,𝑦)   𝐺(𝑥)

Proof of Theorem frecuzrdg0
StepHypRef Expression
1 frec2uz.1 . . . 4 (𝜑𝐶 ∈ ℤ)
2 frec2uz.2 . . . 4 𝐺 = frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 𝐶)
3 frecuzrdgrrn.a . . . 4 (𝜑𝐴𝑆)
4 frecuzrdgrrn.f . . . 4 ((𝜑 ∧ (𝑥 ∈ (ℤ𝐶) ∧ 𝑦𝑆)) → (𝑥𝐹𝑦) ∈ 𝑆)
5 frecuzrdgrrn.2 . . . 4 𝑅 = frec((𝑥 ∈ (ℤ𝐶), 𝑦𝑆 ↦ ⟨(𝑥 + 1), (𝑥𝐹𝑦)⟩), ⟨𝐶, 𝐴⟩)
6 frecuzrdgtcl.3 . . . 4 (𝜑𝑇 = ran 𝑅)
71, 2, 3, 4, 5, 6frecuzrdgtcl 9494 . . 3 (𝜑𝑇:(ℤ𝐶)⟶𝑆)
8 ffun 5079 . . 3 (𝑇:(ℤ𝐶)⟶𝑆 → Fun 𝑇)
97, 8syl 14 . 2 (𝜑 → Fun 𝑇)
105fveq1i 5210 . . . . 5 (𝑅‘∅) = (frec((𝑥 ∈ (ℤ𝐶), 𝑦𝑆 ↦ ⟨(𝑥 + 1), (𝑥𝐹𝑦)⟩), ⟨𝐶, 𝐴⟩)‘∅)
11 opexg 3991 . . . . . . 7 ((𝐶 ∈ ℤ ∧ 𝐴𝑆) → ⟨𝐶, 𝐴⟩ ∈ V)
121, 3, 11syl2anc 403 . . . . . 6 (𝜑 → ⟨𝐶, 𝐴⟩ ∈ V)
13 frec0g 6046 . . . . . 6 (⟨𝐶, 𝐴⟩ ∈ V → (frec((𝑥 ∈ (ℤ𝐶), 𝑦𝑆 ↦ ⟨(𝑥 + 1), (𝑥𝐹𝑦)⟩), ⟨𝐶, 𝐴⟩)‘∅) = ⟨𝐶, 𝐴⟩)
1412, 13syl 14 . . . . 5 (𝜑 → (frec((𝑥 ∈ (ℤ𝐶), 𝑦𝑆 ↦ ⟨(𝑥 + 1), (𝑥𝐹𝑦)⟩), ⟨𝐶, 𝐴⟩)‘∅) = ⟨𝐶, 𝐴⟩)
1510, 14syl5eq 2126 . . . 4 (𝜑 → (𝑅‘∅) = ⟨𝐶, 𝐴⟩)
161, 2, 3, 4, 5frecuzrdgrcl 9492 . . . . . 6 (𝜑𝑅:ω⟶((ℤ𝐶) × 𝑆))
17 ffn 5077 . . . . . 6 (𝑅:ω⟶((ℤ𝐶) × 𝑆) → 𝑅 Fn ω)
1816, 17syl 14 . . . . 5 (𝜑𝑅 Fn ω)
19 peano1 4343 . . . . 5 ∅ ∈ ω
20 fnfvelrn 5331 . . . . 5 ((𝑅 Fn ω ∧ ∅ ∈ ω) → (𝑅‘∅) ∈ ran 𝑅)
2118, 19, 20sylancl 404 . . . 4 (𝜑 → (𝑅‘∅) ∈ ran 𝑅)
2215, 21eqeltrrd 2157 . . 3 (𝜑 → ⟨𝐶, 𝐴⟩ ∈ ran 𝑅)
2322, 6eleqtrrd 2159 . 2 (𝜑 → ⟨𝐶, 𝐴⟩ ∈ 𝑇)
24 funopfv 5245 . 2 (Fun 𝑇 → (⟨𝐶, 𝐴⟩ ∈ 𝑇 → (𝑇𝐶) = 𝐴))
259, 23, 24sylc 61 1 (𝜑 → (𝑇𝐶) = 𝐴)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 102   = wceq 1285  wcel 1434  Vcvv 2602  c0 3258  cop 3409  cmpt 3847  ωcom 4339   × cxp 4369  ran crn 4372  Fun wfun 4926   Fn wfn 4927  wf 4928  cfv 4932  (class class class)co 5543  cmpt2 5545  freccfrec 6039  1c1 7044   + caddc 7046  cz 8432  cuz 8700
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 577  ax-in2 578  ax-io 663  ax-5 1377  ax-7 1378  ax-gen 1379  ax-ie1 1423  ax-ie2 1424  ax-8 1436  ax-10 1437  ax-11 1438  ax-i12 1439  ax-bndl 1440  ax-4 1441  ax-13 1445  ax-14 1446  ax-17 1460  ax-i9 1464  ax-ial 1468  ax-i5r 1469  ax-ext 2064  ax-coll 3901  ax-sep 3904  ax-nul 3912  ax-pow 3956  ax-pr 3972  ax-un 4196  ax-setind 4288  ax-iinf 4337  ax-cnex 7129  ax-resscn 7130  ax-1cn 7131  ax-1re 7132  ax-icn 7133  ax-addcl 7134  ax-addrcl 7135  ax-mulcl 7136  ax-addcom 7138  ax-addass 7140  ax-distr 7142  ax-i2m1 7143  ax-0lt1 7144  ax-0id 7146  ax-rnegex 7147  ax-cnre 7149  ax-pre-ltirr 7150  ax-pre-ltwlin 7151  ax-pre-lttrn 7152  ax-pre-ltadd 7154
This theorem depends on definitions:  df-bi 115  df-3or 921  df-3an 922  df-tru 1288  df-fal 1291  df-nf 1391  df-sb 1687  df-eu 1945  df-mo 1946  df-clab 2069  df-cleq 2075  df-clel 2078  df-nfc 2209  df-ne 2247  df-nel 2341  df-ral 2354  df-rex 2355  df-reu 2356  df-rab 2358  df-v 2604  df-sbc 2817  df-csb 2910  df-dif 2976  df-un 2978  df-in 2980  df-ss 2987  df-nul 3259  df-pw 3392  df-sn 3412  df-pr 3413  df-op 3415  df-uni 3610  df-int 3645  df-iun 3688  df-br 3794  df-opab 3848  df-mpt 3849  df-tr 3884  df-id 4056  df-iord 4129  df-on 4131  df-ilim 4132  df-suc 4134  df-iom 4340  df-xp 4377  df-rel 4378  df-cnv 4379  df-co 4380  df-dm 4381  df-rn 4382  df-res 4383  df-ima 4384  df-iota 4897  df-fun 4934  df-fn 4935  df-f 4936  df-f1 4937  df-fo 4938  df-f1o 4939  df-fv 4940  df-riota 5499  df-ov 5546  df-oprab 5547  df-mpt2 5548  df-1st 5798  df-2nd 5799  df-recs 5954  df-frec 6040  df-pnf 7217  df-mnf 7218  df-xr 7219  df-ltxr 7220  df-le 7221  df-sub 7348  df-neg 7349  df-inn 8107  df-n0 8356  df-z 8433  df-uz 8701
This theorem is referenced by:  iseq1  9533
  Copyright terms: Public domain W3C validator