ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  geo2lim GIF version

Theorem geo2lim 11288
Description: The value of the infinite geometric series 2↑-1 + 2↑-2 +... , multiplied by a constant. (Contributed by Mario Carneiro, 15-Jun-2014.)
Hypothesis
Ref Expression
geo2lim.1 𝐹 = (𝑘 ∈ ℕ ↦ (𝐴 / (2↑𝑘)))
Assertion
Ref Expression
geo2lim (𝐴 ∈ ℂ → seq1( + , 𝐹) ⇝ 𝐴)
Distinct variable group:   𝐴,𝑘
Allowed substitution hint:   𝐹(𝑘)

Proof of Theorem geo2lim
Dummy variables 𝑗 𝑛 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nnuz 9364 . . 3 ℕ = (ℤ‘1)
2 1zzd 9084 . . 3 (𝐴 ∈ ℂ → 1 ∈ ℤ)
3 halfcn 8937 . . . . . . 7 (1 / 2) ∈ ℂ
43a1i 9 . . . . . 6 (𝐴 ∈ ℂ → (1 / 2) ∈ ℂ)
5 halfre 8936 . . . . . . . . 9 (1 / 2) ∈ ℝ
6 halfge0 8939 . . . . . . . . 9 0 ≤ (1 / 2)
7 absid 10846 . . . . . . . . 9 (((1 / 2) ∈ ℝ ∧ 0 ≤ (1 / 2)) → (abs‘(1 / 2)) = (1 / 2))
85, 6, 7mp2an 422 . . . . . . . 8 (abs‘(1 / 2)) = (1 / 2)
9 halflt1 8940 . . . . . . . 8 (1 / 2) < 1
108, 9eqbrtri 3949 . . . . . . 7 (abs‘(1 / 2)) < 1
1110a1i 9 . . . . . 6 (𝐴 ∈ ℂ → (abs‘(1 / 2)) < 1)
124, 11expcnv 11276 . . . . 5 (𝐴 ∈ ℂ → (𝑘 ∈ ℕ0 ↦ ((1 / 2)↑𝑘)) ⇝ 0)
13 id 19 . . . . 5 (𝐴 ∈ ℂ → 𝐴 ∈ ℂ)
14 geo2lim.1 . . . . . . 7 𝐹 = (𝑘 ∈ ℕ ↦ (𝐴 / (2↑𝑘)))
15 nnex 8729 . . . . . . . 8 ℕ ∈ V
1615mptex 5646 . . . . . . 7 (𝑘 ∈ ℕ ↦ (𝐴 / (2↑𝑘))) ∈ V
1714, 16eqeltri 2212 . . . . . 6 𝐹 ∈ V
1817a1i 9 . . . . 5 (𝐴 ∈ ℂ → 𝐹 ∈ V)
19 nnnn0 8987 . . . . . . . 8 (𝑗 ∈ ℕ → 𝑗 ∈ ℕ0)
2019adantl 275 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝑗 ∈ ℕ) → 𝑗 ∈ ℕ0)
213a1i 9 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 𝑗 ∈ ℕ) → (1 / 2) ∈ ℂ)
2221, 20expcld 10427 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝑗 ∈ ℕ) → ((1 / 2)↑𝑗) ∈ ℂ)
23 oveq2 5782 . . . . . . . 8 (𝑘 = 𝑗 → ((1 / 2)↑𝑘) = ((1 / 2)↑𝑗))
24 eqid 2139 . . . . . . . 8 (𝑘 ∈ ℕ0 ↦ ((1 / 2)↑𝑘)) = (𝑘 ∈ ℕ0 ↦ ((1 / 2)↑𝑘))
2523, 24fvmptg 5497 . . . . . . 7 ((𝑗 ∈ ℕ0 ∧ ((1 / 2)↑𝑗) ∈ ℂ) → ((𝑘 ∈ ℕ0 ↦ ((1 / 2)↑𝑘))‘𝑗) = ((1 / 2)↑𝑗))
2620, 22, 25syl2anc 408 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝑗 ∈ ℕ) → ((𝑘 ∈ ℕ0 ↦ ((1 / 2)↑𝑘))‘𝑗) = ((1 / 2)↑𝑗))
2726, 22eqeltrd 2216 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝑗 ∈ ℕ) → ((𝑘 ∈ ℕ0 ↦ ((1 / 2)↑𝑘))‘𝑗) ∈ ℂ)
28 simpl 108 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝑗 ∈ ℕ) → 𝐴 ∈ ℂ)
29 2nn 8884 . . . . . . . . 9 2 ∈ ℕ
30 nnexpcl 10309 . . . . . . . . 9 ((2 ∈ ℕ ∧ 𝑗 ∈ ℕ0) → (2↑𝑗) ∈ ℕ)
3129, 20, 30sylancr 410 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 𝑗 ∈ ℕ) → (2↑𝑗) ∈ ℕ)
3231nncnd 8737 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝑗 ∈ ℕ) → (2↑𝑗) ∈ ℂ)
3331nnap0d 8769 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝑗 ∈ ℕ) → (2↑𝑗) # 0)
3428, 32, 33divrecapd 8556 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝑗 ∈ ℕ) → (𝐴 / (2↑𝑗)) = (𝐴 · (1 / (2↑𝑗))))
35 simpr 109 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝑗 ∈ ℕ) → 𝑗 ∈ ℕ)
3628, 32, 33divclapd 8553 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝑗 ∈ ℕ) → (𝐴 / (2↑𝑗)) ∈ ℂ)
37 oveq2 5782 . . . . . . . . 9 (𝑘 = 𝑗 → (2↑𝑘) = (2↑𝑗))
3837oveq2d 5790 . . . . . . . 8 (𝑘 = 𝑗 → (𝐴 / (2↑𝑘)) = (𝐴 / (2↑𝑗)))
3938, 14fvmptg 5497 . . . . . . 7 ((𝑗 ∈ ℕ ∧ (𝐴 / (2↑𝑗)) ∈ ℂ) → (𝐹𝑗) = (𝐴 / (2↑𝑗)))
4035, 36, 39syl2anc 408 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝑗 ∈ ℕ) → (𝐹𝑗) = (𝐴 / (2↑𝑗)))
41 2cn 8794 . . . . . . . . 9 2 ∈ ℂ
42 2ap0 8816 . . . . . . . . 9 2 # 0
43 nnz 9076 . . . . . . . . . 10 (𝑗 ∈ ℕ → 𝑗 ∈ ℤ)
4443adantl 275 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ 𝑗 ∈ ℕ) → 𝑗 ∈ ℤ)
45 exprecap 10337 . . . . . . . . 9 ((2 ∈ ℂ ∧ 2 # 0 ∧ 𝑗 ∈ ℤ) → ((1 / 2)↑𝑗) = (1 / (2↑𝑗)))
4641, 42, 44, 45mp3an12i 1319 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 𝑗 ∈ ℕ) → ((1 / 2)↑𝑗) = (1 / (2↑𝑗)))
4726, 46eqtrd 2172 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝑗 ∈ ℕ) → ((𝑘 ∈ ℕ0 ↦ ((1 / 2)↑𝑘))‘𝑗) = (1 / (2↑𝑗)))
4847oveq2d 5790 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝑗 ∈ ℕ) → (𝐴 · ((𝑘 ∈ ℕ0 ↦ ((1 / 2)↑𝑘))‘𝑗)) = (𝐴 · (1 / (2↑𝑗))))
4934, 40, 483eqtr4d 2182 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝑗 ∈ ℕ) → (𝐹𝑗) = (𝐴 · ((𝑘 ∈ ℕ0 ↦ ((1 / 2)↑𝑘))‘𝑗)))
501, 2, 12, 13, 18, 27, 49climmulc2 11103 . . . 4 (𝐴 ∈ ℂ → 𝐹 ⇝ (𝐴 · 0))
51 mul01 8154 . . . 4 (𝐴 ∈ ℂ → (𝐴 · 0) = 0)
5250, 51breqtrd 3954 . . 3 (𝐴 ∈ ℂ → 𝐹 ⇝ 0)
53 seqex 10223 . . . 4 seq1( + , 𝐹) ∈ V
5453a1i 9 . . 3 (𝐴 ∈ ℂ → seq1( + , 𝐹) ∈ V)
5540, 36eqeltrd 2216 . . 3 ((𝐴 ∈ ℂ ∧ 𝑗 ∈ ℕ) → (𝐹𝑗) ∈ ℂ)
5640oveq2d 5790 . . . 4 ((𝐴 ∈ ℂ ∧ 𝑗 ∈ ℕ) → (𝐴 − (𝐹𝑗)) = (𝐴 − (𝐴 / (2↑𝑗))))
57 geo2sum 11286 . . . . 5 ((𝑗 ∈ ℕ ∧ 𝐴 ∈ ℂ) → Σ𝑛 ∈ (1...𝑗)(𝐴 / (2↑𝑛)) = (𝐴 − (𝐴 / (2↑𝑗))))
5857ancoms 266 . . . 4 ((𝐴 ∈ ℂ ∧ 𝑗 ∈ ℕ) → Σ𝑛 ∈ (1...𝑗)(𝐴 / (2↑𝑛)) = (𝐴 − (𝐴 / (2↑𝑗))))
59 elnnuz 9365 . . . . . . . 8 (𝑛 ∈ ℕ ↔ 𝑛 ∈ (ℤ‘1))
6059biimpri 132 . . . . . . 7 (𝑛 ∈ (ℤ‘1) → 𝑛 ∈ ℕ)
6160adantl 275 . . . . . 6 (((𝐴 ∈ ℂ ∧ 𝑗 ∈ ℕ) ∧ 𝑛 ∈ (ℤ‘1)) → 𝑛 ∈ ℕ)
62 simpll 518 . . . . . . 7 (((𝐴 ∈ ℂ ∧ 𝑗 ∈ ℕ) ∧ 𝑛 ∈ (ℤ‘1)) → 𝐴 ∈ ℂ)
6341a1i 9 . . . . . . . 8 (((𝐴 ∈ ℂ ∧ 𝑗 ∈ ℕ) ∧ 𝑛 ∈ (ℤ‘1)) → 2 ∈ ℂ)
6461nnnn0d 9033 . . . . . . . 8 (((𝐴 ∈ ℂ ∧ 𝑗 ∈ ℕ) ∧ 𝑛 ∈ (ℤ‘1)) → 𝑛 ∈ ℕ0)
6563, 64expcld 10427 . . . . . . 7 (((𝐴 ∈ ℂ ∧ 𝑗 ∈ ℕ) ∧ 𝑛 ∈ (ℤ‘1)) → (2↑𝑛) ∈ ℂ)
6642a1i 9 . . . . . . . 8 (((𝐴 ∈ ℂ ∧ 𝑗 ∈ ℕ) ∧ 𝑛 ∈ (ℤ‘1)) → 2 # 0)
6761nnzd 9175 . . . . . . . 8 (((𝐴 ∈ ℂ ∧ 𝑗 ∈ ℕ) ∧ 𝑛 ∈ (ℤ‘1)) → 𝑛 ∈ ℤ)
6863, 66, 67expap0d 10433 . . . . . . 7 (((𝐴 ∈ ℂ ∧ 𝑗 ∈ ℕ) ∧ 𝑛 ∈ (ℤ‘1)) → (2↑𝑛) # 0)
6962, 65, 68divclapd 8553 . . . . . 6 (((𝐴 ∈ ℂ ∧ 𝑗 ∈ ℕ) ∧ 𝑛 ∈ (ℤ‘1)) → (𝐴 / (2↑𝑛)) ∈ ℂ)
70 oveq2 5782 . . . . . . . 8 (𝑘 = 𝑛 → (2↑𝑘) = (2↑𝑛))
7170oveq2d 5790 . . . . . . 7 (𝑘 = 𝑛 → (𝐴 / (2↑𝑘)) = (𝐴 / (2↑𝑛)))
7271, 14fvmptg 5497 . . . . . 6 ((𝑛 ∈ ℕ ∧ (𝐴 / (2↑𝑛)) ∈ ℂ) → (𝐹𝑛) = (𝐴 / (2↑𝑛)))
7361, 69, 72syl2anc 408 . . . . 5 (((𝐴 ∈ ℂ ∧ 𝑗 ∈ ℕ) ∧ 𝑛 ∈ (ℤ‘1)) → (𝐹𝑛) = (𝐴 / (2↑𝑛)))
7435, 1eleqtrdi 2232 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝑗 ∈ ℕ) → 𝑗 ∈ (ℤ‘1))
7573, 74, 69fsum3ser 11169 . . . 4 ((𝐴 ∈ ℂ ∧ 𝑗 ∈ ℕ) → Σ𝑛 ∈ (1...𝑗)(𝐴 / (2↑𝑛)) = (seq1( + , 𝐹)‘𝑗))
7656, 58, 753eqtr2rd 2179 . . 3 ((𝐴 ∈ ℂ ∧ 𝑗 ∈ ℕ) → (seq1( + , 𝐹)‘𝑗) = (𝐴 − (𝐹𝑗)))
771, 2, 52, 13, 54, 55, 76climsubc2 11105 . 2 (𝐴 ∈ ℂ → seq1( + , 𝐹) ⇝ (𝐴 − 0))
78 subid1 7985 . 2 (𝐴 ∈ ℂ → (𝐴 − 0) = 𝐴)
7977, 78breqtrd 3954 1 (𝐴 ∈ ℂ → seq1( + , 𝐹) ⇝ 𝐴)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103   = wceq 1331  wcel 1480  Vcvv 2686   class class class wbr 3929  cmpt 3989  cfv 5123  (class class class)co 5774  cc 7621  cr 7622  0cc0 7623  1c1 7624   + caddc 7626   · cmul 7628   < clt 7803  cle 7804  cmin 7936   # cap 8346   / cdiv 8435  cn 8723  2c2 8774  0cn0 8980  cz 9057  cuz 9329  ...cfz 9793  seqcseq 10221  cexp 10295  abscabs 10772  cli 11050  Σcsu 11125
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-13 1491  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2121  ax-coll 4043  ax-sep 4046  ax-nul 4054  ax-pow 4098  ax-pr 4131  ax-un 4355  ax-setind 4452  ax-iinf 4502  ax-cnex 7714  ax-resscn 7715  ax-1cn 7716  ax-1re 7717  ax-icn 7718  ax-addcl 7719  ax-addrcl 7720  ax-mulcl 7721  ax-mulrcl 7722  ax-addcom 7723  ax-mulcom 7724  ax-addass 7725  ax-mulass 7726  ax-distr 7727  ax-i2m1 7728  ax-0lt1 7729  ax-1rid 7730  ax-0id 7731  ax-rnegex 7732  ax-precex 7733  ax-cnre 7734  ax-pre-ltirr 7735  ax-pre-ltwlin 7736  ax-pre-lttrn 7737  ax-pre-apti 7738  ax-pre-ltadd 7739  ax-pre-mulgt0 7740  ax-pre-mulext 7741  ax-arch 7742  ax-caucvg 7743
This theorem depends on definitions:  df-bi 116  df-dc 820  df-3or 963  df-3an 964  df-tru 1334  df-fal 1337  df-nf 1437  df-sb 1736  df-eu 2002  df-mo 2003  df-clab 2126  df-cleq 2132  df-clel 2135  df-nfc 2270  df-ne 2309  df-nel 2404  df-ral 2421  df-rex 2422  df-reu 2423  df-rmo 2424  df-rab 2425  df-v 2688  df-sbc 2910  df-csb 3004  df-dif 3073  df-un 3075  df-in 3077  df-ss 3084  df-nul 3364  df-if 3475  df-pw 3512  df-sn 3533  df-pr 3534  df-op 3536  df-uni 3737  df-int 3772  df-iun 3815  df-br 3930  df-opab 3990  df-mpt 3991  df-tr 4027  df-id 4215  df-po 4218  df-iso 4219  df-iord 4288  df-on 4290  df-ilim 4291  df-suc 4293  df-iom 4505  df-xp 4545  df-rel 4546  df-cnv 4547  df-co 4548  df-dm 4549  df-rn 4550  df-res 4551  df-ima 4552  df-iota 5088  df-fun 5125  df-fn 5126  df-f 5127  df-f1 5128  df-fo 5129  df-f1o 5130  df-fv 5131  df-isom 5132  df-riota 5730  df-ov 5777  df-oprab 5778  df-mpo 5779  df-1st 6038  df-2nd 6039  df-recs 6202  df-irdg 6267  df-frec 6288  df-1o 6313  df-oadd 6317  df-er 6429  df-en 6635  df-dom 6636  df-fin 6637  df-pnf 7805  df-mnf 7806  df-xr 7807  df-ltxr 7808  df-le 7809  df-sub 7938  df-neg 7939  df-reap 8340  df-ap 8347  df-div 8436  df-inn 8724  df-2 8782  df-3 8783  df-4 8784  df-n0 8981  df-z 9058  df-uz 9330  df-q 9415  df-rp 9445  df-fz 9794  df-fzo 9923  df-seqfrec 10222  df-exp 10296  df-ihash 10525  df-cj 10617  df-re 10618  df-im 10619  df-rsqrt 10773  df-abs 10774  df-clim 11051  df-sumdc 11126
This theorem is referenced by:  trilpolemeq1  13236
  Copyright terms: Public domain W3C validator