ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  intfracq GIF version

Theorem intfracq 9235
Description: Decompose a rational number, expressed as a ratio, into integer and fractional parts. The fractional part has a tighter bound than that of intqfrac2 9234. (Contributed by NM, 16-Aug-2008.)
Hypotheses
Ref Expression
intfracq.1 𝑍 = (⌊‘(𝑀 / 𝑁))
intfracq.2 𝐹 = ((𝑀 / 𝑁) − 𝑍)
Assertion
Ref Expression
intfracq ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) → (0 ≤ 𝐹𝐹 ≤ ((𝑁 − 1) / 𝑁) ∧ (𝑀 / 𝑁) = (𝑍 + 𝐹)))

Proof of Theorem intfracq
StepHypRef Expression
1 znq 8626 . . . 4 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) → (𝑀 / 𝑁) ∈ ℚ)
2 intfracq.1 . . . . 5 𝑍 = (⌊‘(𝑀 / 𝑁))
3 intfracq.2 . . . . 5 𝐹 = ((𝑀 / 𝑁) − 𝑍)
42, 3intqfrac2 9234 . . . 4 ((𝑀 / 𝑁) ∈ ℚ → (0 ≤ 𝐹𝐹 < 1 ∧ (𝑀 / 𝑁) = (𝑍 + 𝐹)))
51, 4syl 14 . . 3 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) → (0 ≤ 𝐹𝐹 < 1 ∧ (𝑀 / 𝑁) = (𝑍 + 𝐹)))
65simp1d 925 . 2 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) → 0 ≤ 𝐹)
7 qfraclt1 9195 . . . . . . 7 ((𝑀 / 𝑁) ∈ ℚ → ((𝑀 / 𝑁) − (⌊‘(𝑀 / 𝑁))) < 1)
81, 7syl 14 . . . . . 6 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) → ((𝑀 / 𝑁) − (⌊‘(𝑀 / 𝑁))) < 1)
92oveq2i 5548 . . . . . . . 8 ((𝑀 / 𝑁) − 𝑍) = ((𝑀 / 𝑁) − (⌊‘(𝑀 / 𝑁)))
103, 9eqtri 2074 . . . . . . 7 𝐹 = ((𝑀 / 𝑁) − (⌊‘(𝑀 / 𝑁)))
1110a1i 9 . . . . . 6 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) → 𝐹 = ((𝑀 / 𝑁) − (⌊‘(𝑀 / 𝑁))))
12 simpr 107 . . . . . . . 8 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) → 𝑁 ∈ ℕ)
1312nncnd 7974 . . . . . . 7 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) → 𝑁 ∈ ℂ)
1412nnap0d 8005 . . . . . . 7 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) → 𝑁 # 0)
1513, 14dividapd 7807 . . . . . 6 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) → (𝑁 / 𝑁) = 1)
168, 11, 153brtr4d 3819 . . . . 5 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) → 𝐹 < (𝑁 / 𝑁))
17 qre 8627 . . . . . . . . 9 ((𝑀 / 𝑁) ∈ ℚ → (𝑀 / 𝑁) ∈ ℝ)
181, 17syl 14 . . . . . . . 8 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) → (𝑀 / 𝑁) ∈ ℝ)
191flqcld 9192 . . . . . . . . . 10 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) → (⌊‘(𝑀 / 𝑁)) ∈ ℤ)
202, 19syl5eqel 2138 . . . . . . . . 9 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) → 𝑍 ∈ ℤ)
2120zred 8389 . . . . . . . 8 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) → 𝑍 ∈ ℝ)
2218, 21resubcld 7421 . . . . . . 7 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) → ((𝑀 / 𝑁) − 𝑍) ∈ ℝ)
233, 22syl5eqel 2138 . . . . . 6 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) → 𝐹 ∈ ℝ)
24 nnre 7967 . . . . . . 7 (𝑁 ∈ ℕ → 𝑁 ∈ ℝ)
2524adantl 266 . . . . . 6 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) → 𝑁 ∈ ℝ)
26 nngt0 7985 . . . . . . . 8 (𝑁 ∈ ℕ → 0 < 𝑁)
2724, 26jca 294 . . . . . . 7 (𝑁 ∈ ℕ → (𝑁 ∈ ℝ ∧ 0 < 𝑁))
2827adantl 266 . . . . . 6 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) → (𝑁 ∈ ℝ ∧ 0 < 𝑁))
29 ltmuldiv2 7886 . . . . . 6 ((𝐹 ∈ ℝ ∧ 𝑁 ∈ ℝ ∧ (𝑁 ∈ ℝ ∧ 0 < 𝑁)) → ((𝑁 · 𝐹) < 𝑁𝐹 < (𝑁 / 𝑁)))
3023, 25, 28, 29syl3anc 1144 . . . . 5 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) → ((𝑁 · 𝐹) < 𝑁𝐹 < (𝑁 / 𝑁)))
3116, 30mpbird 160 . . . 4 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) → (𝑁 · 𝐹) < 𝑁)
323oveq2i 5548 . . . . . . 7 (𝑁 · 𝐹) = (𝑁 · ((𝑀 / 𝑁) − 𝑍))
3318recnd 7083 . . . . . . . 8 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) → (𝑀 / 𝑁) ∈ ℂ)
3420zcnd 8390 . . . . . . . 8 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) → 𝑍 ∈ ℂ)
3513, 33, 34subdid 7453 . . . . . . 7 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) → (𝑁 · ((𝑀 / 𝑁) − 𝑍)) = ((𝑁 · (𝑀 / 𝑁)) − (𝑁 · 𝑍)))
3632, 35syl5eq 2098 . . . . . 6 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) → (𝑁 · 𝐹) = ((𝑁 · (𝑀 / 𝑁)) − (𝑁 · 𝑍)))
37 zcn 8277 . . . . . . . . . 10 (𝑀 ∈ ℤ → 𝑀 ∈ ℂ)
3837adantr 265 . . . . . . . . 9 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) → 𝑀 ∈ ℂ)
3938, 13, 14divcanap2d 7812 . . . . . . . 8 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) → (𝑁 · (𝑀 / 𝑁)) = 𝑀)
40 simpl 106 . . . . . . . 8 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) → 𝑀 ∈ ℤ)
4139, 40eqeltrd 2128 . . . . . . 7 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) → (𝑁 · (𝑀 / 𝑁)) ∈ ℤ)
42 nnz 8291 . . . . . . . . 9 (𝑁 ∈ ℕ → 𝑁 ∈ ℤ)
4342adantl 266 . . . . . . . 8 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) → 𝑁 ∈ ℤ)
4443, 20zmulcld 8395 . . . . . . 7 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) → (𝑁 · 𝑍) ∈ ℤ)
4541, 44zsubcld 8394 . . . . . 6 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) → ((𝑁 · (𝑀 / 𝑁)) − (𝑁 · 𝑍)) ∈ ℤ)
4636, 45eqeltrd 2128 . . . . 5 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) → (𝑁 · 𝐹) ∈ ℤ)
47 zltlem1 8329 . . . . 5 (((𝑁 · 𝐹) ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝑁 · 𝐹) < 𝑁 ↔ (𝑁 · 𝐹) ≤ (𝑁 − 1)))
4846, 43, 47syl2anc 397 . . . 4 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) → ((𝑁 · 𝐹) < 𝑁 ↔ (𝑁 · 𝐹) ≤ (𝑁 − 1)))
4931, 48mpbid 139 . . 3 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) → (𝑁 · 𝐹) ≤ (𝑁 − 1))
50 peano2rem 7311 . . . . . 6 (𝑁 ∈ ℝ → (𝑁 − 1) ∈ ℝ)
5124, 50syl 14 . . . . 5 (𝑁 ∈ ℕ → (𝑁 − 1) ∈ ℝ)
5251adantl 266 . . . 4 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) → (𝑁 − 1) ∈ ℝ)
53 lemuldiv2 7893 . . . 4 ((𝐹 ∈ ℝ ∧ (𝑁 − 1) ∈ ℝ ∧ (𝑁 ∈ ℝ ∧ 0 < 𝑁)) → ((𝑁 · 𝐹) ≤ (𝑁 − 1) ↔ 𝐹 ≤ ((𝑁 − 1) / 𝑁)))
5423, 52, 28, 53syl3anc 1144 . . 3 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) → ((𝑁 · 𝐹) ≤ (𝑁 − 1) ↔ 𝐹 ≤ ((𝑁 − 1) / 𝑁)))
5549, 54mpbid 139 . 2 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) → 𝐹 ≤ ((𝑁 − 1) / 𝑁))
565simp3d 927 . 2 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) → (𝑀 / 𝑁) = (𝑍 + 𝐹))
576, 55, 563jca 1093 1 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) → (0 ≤ 𝐹𝐹 ≤ ((𝑁 − 1) / 𝑁) ∧ (𝑀 / 𝑁) = (𝑍 + 𝐹)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 101  wb 102  w3a 894   = wceq 1257  wcel 1407   class class class wbr 3789  cfv 4927  (class class class)co 5537  cc 6915  cr 6916  0cc0 6917  1c1 6918   + caddc 6920   · cmul 6922   < clt 7089  cle 7090  cmin 7215   / cdiv 7695  cn 7960  cz 8272  cq 8621  cfl 9185
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 103  ax-ia2 104  ax-ia3 105  ax-in1 552  ax-in2 553  ax-io 638  ax-5 1350  ax-7 1351  ax-gen 1352  ax-ie1 1396  ax-ie2 1397  ax-8 1409  ax-10 1410  ax-11 1411  ax-i12 1412  ax-bndl 1413  ax-4 1414  ax-13 1418  ax-14 1419  ax-17 1433  ax-i9 1437  ax-ial 1441  ax-i5r 1442  ax-ext 2036  ax-coll 3897  ax-sep 3900  ax-nul 3908  ax-pow 3952  ax-pr 3969  ax-un 4195  ax-setind 4287  ax-iinf 4336  ax-cnex 7003  ax-resscn 7004  ax-1cn 7005  ax-1re 7006  ax-icn 7007  ax-addcl 7008  ax-addrcl 7009  ax-mulcl 7010  ax-mulrcl 7011  ax-addcom 7012  ax-mulcom 7013  ax-addass 7014  ax-mulass 7015  ax-distr 7016  ax-i2m1 7017  ax-1rid 7019  ax-0id 7020  ax-rnegex 7021  ax-precex 7022  ax-cnre 7023  ax-pre-ltirr 7024  ax-pre-ltwlin 7025  ax-pre-lttrn 7026  ax-pre-apti 7027  ax-pre-ltadd 7028  ax-pre-mulgt0 7029  ax-pre-mulext 7030  ax-arch 7031
This theorem depends on definitions:  df-bi 114  df-dc 752  df-3or 895  df-3an 896  df-tru 1260  df-fal 1263  df-nf 1364  df-sb 1660  df-eu 1917  df-mo 1918  df-clab 2041  df-cleq 2047  df-clel 2050  df-nfc 2181  df-ne 2219  df-nel 2313  df-ral 2326  df-rex 2327  df-reu 2328  df-rmo 2329  df-rab 2330  df-v 2574  df-sbc 2785  df-csb 2878  df-dif 2945  df-un 2947  df-in 2949  df-ss 2956  df-nul 3250  df-pw 3386  df-sn 3406  df-pr 3407  df-op 3409  df-uni 3606  df-int 3641  df-iun 3684  df-br 3790  df-opab 3844  df-mpt 3845  df-tr 3880  df-eprel 4051  df-id 4055  df-po 4058  df-iso 4059  df-iord 4128  df-on 4130  df-suc 4133  df-iom 4339  df-xp 4376  df-rel 4377  df-cnv 4378  df-co 4379  df-dm 4380  df-rn 4381  df-res 4382  df-ima 4383  df-iota 4892  df-fun 4929  df-fn 4930  df-f 4931  df-f1 4932  df-fo 4933  df-f1o 4934  df-fv 4935  df-riota 5493  df-ov 5540  df-oprab 5541  df-mpt2 5542  df-1st 5792  df-2nd 5793  df-recs 5948  df-irdg 5985  df-1o 6029  df-2o 6030  df-oadd 6033  df-omul 6034  df-er 6134  df-ec 6136  df-qs 6140  df-ni 6430  df-pli 6431  df-mi 6432  df-lti 6433  df-plpq 6470  df-mpq 6471  df-enq 6473  df-nqqs 6474  df-plqqs 6475  df-mqqs 6476  df-1nqqs 6477  df-rq 6478  df-ltnqqs 6479  df-enq0 6550  df-nq0 6551  df-0nq0 6552  df-plq0 6553  df-mq0 6554  df-inp 6592  df-i1p 6593  df-iplp 6594  df-iltp 6596  df-enr 6839  df-nr 6840  df-ltr 6843  df-0r 6844  df-1r 6845  df-0 6924  df-1 6925  df-r 6927  df-lt 6930  df-pnf 7091  df-mnf 7092  df-xr 7093  df-ltxr 7094  df-le 7095  df-sub 7217  df-neg 7218  df-reap 7610  df-ap 7617  df-div 7696  df-inn 7961  df-n0 8210  df-z 8273  df-q 8622  df-rp 8652  df-fl 9187
This theorem is referenced by:  flqdiv  9236
  Copyright terms: Public domain W3C validator