ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ltxr GIF version

Theorem ltxr 8766
Description: The 'less than' binary relation on the set of extended reals. Definition 12-3.1 of [Gleason] p. 173. (Contributed by NM, 14-Oct-2005.)
Assertion
Ref Expression
ltxr ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → (𝐴 < 𝐵 ↔ ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐴 < 𝐵) ∨ (𝐴 = -∞ ∧ 𝐵 = +∞)) ∨ ((𝐴 ∈ ℝ ∧ 𝐵 = +∞) ∨ (𝐴 = -∞ ∧ 𝐵 ∈ ℝ)))))

Proof of Theorem ltxr
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 breq12 3794 . . . . 5 ((𝑥 = 𝐴𝑦 = 𝐵) → (𝑥 < 𝑦𝐴 < 𝐵))
2 df-3an 896 . . . . . 6 ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ ∧ 𝑥 < 𝑦) ↔ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) ∧ 𝑥 < 𝑦))
32opabbii 3849 . . . . 5 {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ ∧ 𝑥 < 𝑦)} = {⟨𝑥, 𝑦⟩ ∣ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) ∧ 𝑥 < 𝑦)}
41, 3brab2ga 4440 . . . 4 (𝐴{⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ ∧ 𝑥 < 𝑦)}𝐵 ↔ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐴 < 𝐵))
54a1i 9 . . 3 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → (𝐴{⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ ∧ 𝑥 < 𝑦)}𝐵 ↔ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐴 < 𝐵)))
6 brun 3835 . . . 4 (𝐴(((ℝ ∪ {-∞}) × {+∞}) ∪ ({-∞} × ℝ))𝐵 ↔ (𝐴((ℝ ∪ {-∞}) × {+∞})𝐵𝐴({-∞} × ℝ)𝐵))
7 brxp 4400 . . . . . . 7 (𝐴((ℝ ∪ {-∞}) × {+∞})𝐵 ↔ (𝐴 ∈ (ℝ ∪ {-∞}) ∧ 𝐵 ∈ {+∞}))
8 elun 3109 . . . . . . . . . . 11 (𝐴 ∈ (ℝ ∪ {-∞}) ↔ (𝐴 ∈ ℝ ∨ 𝐴 ∈ {-∞}))
9 orcom 655 . . . . . . . . . . 11 ((𝐴 ∈ ℝ ∨ 𝐴 ∈ {-∞}) ↔ (𝐴 ∈ {-∞} ∨ 𝐴 ∈ ℝ))
108, 9bitri 177 . . . . . . . . . 10 (𝐴 ∈ (ℝ ∪ {-∞}) ↔ (𝐴 ∈ {-∞} ∨ 𝐴 ∈ ℝ))
11 elsng 3415 . . . . . . . . . . 11 (𝐴 ∈ ℝ* → (𝐴 ∈ {-∞} ↔ 𝐴 = -∞))
1211orbi1d 713 . . . . . . . . . 10 (𝐴 ∈ ℝ* → ((𝐴 ∈ {-∞} ∨ 𝐴 ∈ ℝ) ↔ (𝐴 = -∞ ∨ 𝐴 ∈ ℝ)))
1310, 12syl5bb 185 . . . . . . . . 9 (𝐴 ∈ ℝ* → (𝐴 ∈ (ℝ ∪ {-∞}) ↔ (𝐴 = -∞ ∨ 𝐴 ∈ ℝ)))
14 elsng 3415 . . . . . . . . 9 (𝐵 ∈ ℝ* → (𝐵 ∈ {+∞} ↔ 𝐵 = +∞))
1513, 14bi2anan9 546 . . . . . . . 8 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → ((𝐴 ∈ (ℝ ∪ {-∞}) ∧ 𝐵 ∈ {+∞}) ↔ ((𝐴 = -∞ ∨ 𝐴 ∈ ℝ) ∧ 𝐵 = +∞)))
16 andir 741 . . . . . . . 8 (((𝐴 = -∞ ∨ 𝐴 ∈ ℝ) ∧ 𝐵 = +∞) ↔ ((𝐴 = -∞ ∧ 𝐵 = +∞) ∨ (𝐴 ∈ ℝ ∧ 𝐵 = +∞)))
1715, 16syl6bb 189 . . . . . . 7 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → ((𝐴 ∈ (ℝ ∪ {-∞}) ∧ 𝐵 ∈ {+∞}) ↔ ((𝐴 = -∞ ∧ 𝐵 = +∞) ∨ (𝐴 ∈ ℝ ∧ 𝐵 = +∞))))
187, 17syl5bb 185 . . . . . 6 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → (𝐴((ℝ ∪ {-∞}) × {+∞})𝐵 ↔ ((𝐴 = -∞ ∧ 𝐵 = +∞) ∨ (𝐴 ∈ ℝ ∧ 𝐵 = +∞))))
19 brxp 4400 . . . . . . 7 (𝐴({-∞} × ℝ)𝐵 ↔ (𝐴 ∈ {-∞} ∧ 𝐵 ∈ ℝ))
2011anbi1d 446 . . . . . . . 8 (𝐴 ∈ ℝ* → ((𝐴 ∈ {-∞} ∧ 𝐵 ∈ ℝ) ↔ (𝐴 = -∞ ∧ 𝐵 ∈ ℝ)))
2120adantr 265 . . . . . . 7 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → ((𝐴 ∈ {-∞} ∧ 𝐵 ∈ ℝ) ↔ (𝐴 = -∞ ∧ 𝐵 ∈ ℝ)))
2219, 21syl5bb 185 . . . . . 6 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → (𝐴({-∞} × ℝ)𝐵 ↔ (𝐴 = -∞ ∧ 𝐵 ∈ ℝ)))
2318, 22orbi12d 715 . . . . 5 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → ((𝐴((ℝ ∪ {-∞}) × {+∞})𝐵𝐴({-∞} × ℝ)𝐵) ↔ (((𝐴 = -∞ ∧ 𝐵 = +∞) ∨ (𝐴 ∈ ℝ ∧ 𝐵 = +∞)) ∨ (𝐴 = -∞ ∧ 𝐵 ∈ ℝ))))
24 orass 692 . . . . 5 ((((𝐴 = -∞ ∧ 𝐵 = +∞) ∨ (𝐴 ∈ ℝ ∧ 𝐵 = +∞)) ∨ (𝐴 = -∞ ∧ 𝐵 ∈ ℝ)) ↔ ((𝐴 = -∞ ∧ 𝐵 = +∞) ∨ ((𝐴 ∈ ℝ ∧ 𝐵 = +∞) ∨ (𝐴 = -∞ ∧ 𝐵 ∈ ℝ))))
2523, 24syl6bb 189 . . . 4 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → ((𝐴((ℝ ∪ {-∞}) × {+∞})𝐵𝐴({-∞} × ℝ)𝐵) ↔ ((𝐴 = -∞ ∧ 𝐵 = +∞) ∨ ((𝐴 ∈ ℝ ∧ 𝐵 = +∞) ∨ (𝐴 = -∞ ∧ 𝐵 ∈ ℝ)))))
266, 25syl5bb 185 . . 3 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → (𝐴(((ℝ ∪ {-∞}) × {+∞}) ∪ ({-∞} × ℝ))𝐵 ↔ ((𝐴 = -∞ ∧ 𝐵 = +∞) ∨ ((𝐴 ∈ ℝ ∧ 𝐵 = +∞) ∨ (𝐴 = -∞ ∧ 𝐵 ∈ ℝ)))))
275, 26orbi12d 715 . 2 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → ((𝐴{⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ ∧ 𝑥 < 𝑦)}𝐵𝐴(((ℝ ∪ {-∞}) × {+∞}) ∪ ({-∞} × ℝ))𝐵) ↔ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐴 < 𝐵) ∨ ((𝐴 = -∞ ∧ 𝐵 = +∞) ∨ ((𝐴 ∈ ℝ ∧ 𝐵 = +∞) ∨ (𝐴 = -∞ ∧ 𝐵 ∈ ℝ))))))
28 df-ltxr 7094 . . . 4 < = ({⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ ∧ 𝑥 < 𝑦)} ∪ (((ℝ ∪ {-∞}) × {+∞}) ∪ ({-∞} × ℝ)))
2928breqi 3795 . . 3 (𝐴 < 𝐵𝐴({⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ ∧ 𝑥 < 𝑦)} ∪ (((ℝ ∪ {-∞}) × {+∞}) ∪ ({-∞} × ℝ)))𝐵)
30 brun 3835 . . 3 (𝐴({⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ ∧ 𝑥 < 𝑦)} ∪ (((ℝ ∪ {-∞}) × {+∞}) ∪ ({-∞} × ℝ)))𝐵 ↔ (𝐴{⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ ∧ 𝑥 < 𝑦)}𝐵𝐴(((ℝ ∪ {-∞}) × {+∞}) ∪ ({-∞} × ℝ))𝐵))
3129, 30bitri 177 . 2 (𝐴 < 𝐵 ↔ (𝐴{⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ ∧ 𝑥 < 𝑦)}𝐵𝐴(((ℝ ∪ {-∞}) × {+∞}) ∪ ({-∞} × ℝ))𝐵))
32 orass 692 . 2 (((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐴 < 𝐵) ∨ (𝐴 = -∞ ∧ 𝐵 = +∞)) ∨ ((𝐴 ∈ ℝ ∧ 𝐵 = +∞) ∨ (𝐴 = -∞ ∧ 𝐵 ∈ ℝ))) ↔ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐴 < 𝐵) ∨ ((𝐴 = -∞ ∧ 𝐵 = +∞) ∨ ((𝐴 ∈ ℝ ∧ 𝐵 = +∞) ∨ (𝐴 = -∞ ∧ 𝐵 ∈ ℝ)))))
3327, 31, 323bitr4g 216 1 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → (𝐴 < 𝐵 ↔ ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐴 < 𝐵) ∨ (𝐴 = -∞ ∧ 𝐵 = +∞)) ∨ ((𝐴 ∈ ℝ ∧ 𝐵 = +∞) ∨ (𝐴 = -∞ ∧ 𝐵 ∈ ℝ)))))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 101  wb 102  wo 637  w3a 894   = wceq 1257  wcel 1407  cun 2940  {csn 3400   class class class wbr 3789  {copab 3842   × cxp 4368  cr 6916   < cltrr 6921  +∞cpnf 7086  -∞cmnf 7087  *cxr 7088   < clt 7089
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 103  ax-ia2 104  ax-ia3 105  ax-io 638  ax-5 1350  ax-7 1351  ax-gen 1352  ax-ie1 1396  ax-ie2 1397  ax-8 1409  ax-10 1410  ax-11 1411  ax-i12 1412  ax-bndl 1413  ax-4 1414  ax-14 1419  ax-17 1433  ax-i9 1437  ax-ial 1441  ax-i5r 1442  ax-ext 2036  ax-sep 3900  ax-pow 3952  ax-pr 3969
This theorem depends on definitions:  df-bi 114  df-3an 896  df-tru 1260  df-nf 1364  df-sb 1660  df-eu 1917  df-mo 1918  df-clab 2041  df-cleq 2047  df-clel 2050  df-nfc 2181  df-ral 2326  df-rex 2327  df-v 2574  df-un 2947  df-in 2949  df-ss 2956  df-pw 3386  df-sn 3406  df-pr 3407  df-op 3409  df-br 3790  df-opab 3844  df-xp 4376  df-ltxr 7094
This theorem is referenced by:  xrltnr  8772  ltpnf  8773  mnflt  8775  mnfltpnf  8777  pnfnlt  8779  nltmnf  8780
  Copyright terms: Public domain W3C validator