Intuitionistic Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >  mulcnsr GIF version

Theorem mulcnsr 6968
 Description: Multiplication of complex numbers in terms of signed reals. (Contributed by NM, 9-Aug-1995.)
Assertion
Ref Expression
mulcnsr (((𝐴R𝐵R) ∧ (𝐶R𝐷R)) → (⟨𝐴, 𝐵⟩ · ⟨𝐶, 𝐷⟩) = ⟨((𝐴 ·R 𝐶) +R (-1R ·R (𝐵 ·R 𝐷))), ((𝐵 ·R 𝐶) +R (𝐴 ·R 𝐷))⟩)

Proof of Theorem mulcnsr
Dummy variables 𝑥 𝑦 𝑧 𝑤 𝑣 𝑢 𝑓 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 mulclsr 6896 . . . . 5 ((𝐴R𝐶R) → (𝐴 ·R 𝐶) ∈ R)
21ad2ant2r 486 . . . 4 (((𝐴R𝐵R) ∧ (𝐶R𝐷R)) → (𝐴 ·R 𝐶) ∈ R)
3 m1r 6894 . . . . 5 -1RR
4 mulclsr 6896 . . . . . 6 ((𝐵R𝐷R) → (𝐵 ·R 𝐷) ∈ R)
54ad2ant2l 485 . . . . 5 (((𝐴R𝐵R) ∧ (𝐶R𝐷R)) → (𝐵 ·R 𝐷) ∈ R)
6 mulclsr 6896 . . . . 5 ((-1RR ∧ (𝐵 ·R 𝐷) ∈ R) → (-1R ·R (𝐵 ·R 𝐷)) ∈ R)
73, 5, 6sylancr 399 . . . 4 (((𝐴R𝐵R) ∧ (𝐶R𝐷R)) → (-1R ·R (𝐵 ·R 𝐷)) ∈ R)
8 addclsr 6895 . . . 4 (((𝐴 ·R 𝐶) ∈ R ∧ (-1R ·R (𝐵 ·R 𝐷)) ∈ R) → ((𝐴 ·R 𝐶) +R (-1R ·R (𝐵 ·R 𝐷))) ∈ R)
92, 7, 8syl2anc 397 . . 3 (((𝐴R𝐵R) ∧ (𝐶R𝐷R)) → ((𝐴 ·R 𝐶) +R (-1R ·R (𝐵 ·R 𝐷))) ∈ R)
10 mulclsr 6896 . . . . 5 ((𝐵R𝐶R) → (𝐵 ·R 𝐶) ∈ R)
1110ad2ant2lr 487 . . . 4 (((𝐴R𝐵R) ∧ (𝐶R𝐷R)) → (𝐵 ·R 𝐶) ∈ R)
12 mulclsr 6896 . . . . 5 ((𝐴R𝐷R) → (𝐴 ·R 𝐷) ∈ R)
1312ad2ant2rl 488 . . . 4 (((𝐴R𝐵R) ∧ (𝐶R𝐷R)) → (𝐴 ·R 𝐷) ∈ R)
14 addclsr 6895 . . . 4 (((𝐵 ·R 𝐶) ∈ R ∧ (𝐴 ·R 𝐷) ∈ R) → ((𝐵 ·R 𝐶) +R (𝐴 ·R 𝐷)) ∈ R)
1511, 13, 14syl2anc 397 . . 3 (((𝐴R𝐵R) ∧ (𝐶R𝐷R)) → ((𝐵 ·R 𝐶) +R (𝐴 ·R 𝐷)) ∈ R)
16 opelxpi 4403 . . 3 ((((𝐴 ·R 𝐶) +R (-1R ·R (𝐵 ·R 𝐷))) ∈ R ∧ ((𝐵 ·R 𝐶) +R (𝐴 ·R 𝐷)) ∈ R) → ⟨((𝐴 ·R 𝐶) +R (-1R ·R (𝐵 ·R 𝐷))), ((𝐵 ·R 𝐶) +R (𝐴 ·R 𝐷))⟩ ∈ (R × R))
179, 15, 16syl2anc 397 . 2 (((𝐴R𝐵R) ∧ (𝐶R𝐷R)) → ⟨((𝐴 ·R 𝐶) +R (-1R ·R (𝐵 ·R 𝐷))), ((𝐵 ·R 𝐶) +R (𝐴 ·R 𝐷))⟩ ∈ (R × R))
18 simpll 489 . . . . 5 (((𝑤 = 𝐴𝑣 = 𝐵) ∧ (𝑢 = 𝐶𝑓 = 𝐷)) → 𝑤 = 𝐴)
19 simprl 491 . . . . 5 (((𝑤 = 𝐴𝑣 = 𝐵) ∧ (𝑢 = 𝐶𝑓 = 𝐷)) → 𝑢 = 𝐶)
2018, 19oveq12d 5557 . . . 4 (((𝑤 = 𝐴𝑣 = 𝐵) ∧ (𝑢 = 𝐶𝑓 = 𝐷)) → (𝑤 ·R 𝑢) = (𝐴 ·R 𝐶))
21 simplr 490 . . . . . 6 (((𝑤 = 𝐴𝑣 = 𝐵) ∧ (𝑢 = 𝐶𝑓 = 𝐷)) → 𝑣 = 𝐵)
22 simprr 492 . . . . . 6 (((𝑤 = 𝐴𝑣 = 𝐵) ∧ (𝑢 = 𝐶𝑓 = 𝐷)) → 𝑓 = 𝐷)
2321, 22oveq12d 5557 . . . . 5 (((𝑤 = 𝐴𝑣 = 𝐵) ∧ (𝑢 = 𝐶𝑓 = 𝐷)) → (𝑣 ·R 𝑓) = (𝐵 ·R 𝐷))
2423oveq2d 5555 . . . 4 (((𝑤 = 𝐴𝑣 = 𝐵) ∧ (𝑢 = 𝐶𝑓 = 𝐷)) → (-1R ·R (𝑣 ·R 𝑓)) = (-1R ·R (𝐵 ·R 𝐷)))
2520, 24oveq12d 5557 . . 3 (((𝑤 = 𝐴𝑣 = 𝐵) ∧ (𝑢 = 𝐶𝑓 = 𝐷)) → ((𝑤 ·R 𝑢) +R (-1R ·R (𝑣 ·R 𝑓))) = ((𝐴 ·R 𝐶) +R (-1R ·R (𝐵 ·R 𝐷))))
2621, 19oveq12d 5557 . . . 4 (((𝑤 = 𝐴𝑣 = 𝐵) ∧ (𝑢 = 𝐶𝑓 = 𝐷)) → (𝑣 ·R 𝑢) = (𝐵 ·R 𝐶))
2718, 22oveq12d 5557 . . . 4 (((𝑤 = 𝐴𝑣 = 𝐵) ∧ (𝑢 = 𝐶𝑓 = 𝐷)) → (𝑤 ·R 𝑓) = (𝐴 ·R 𝐷))
2826, 27oveq12d 5557 . . 3 (((𝑤 = 𝐴𝑣 = 𝐵) ∧ (𝑢 = 𝐶𝑓 = 𝐷)) → ((𝑣 ·R 𝑢) +R (𝑤 ·R 𝑓)) = ((𝐵 ·R 𝐶) +R (𝐴 ·R 𝐷)))
2925, 28opeq12d 3584 . 2 (((𝑤 = 𝐴𝑣 = 𝐵) ∧ (𝑢 = 𝐶𝑓 = 𝐷)) → ⟨((𝑤 ·R 𝑢) +R (-1R ·R (𝑣 ·R 𝑓))), ((𝑣 ·R 𝑢) +R (𝑤 ·R 𝑓))⟩ = ⟨((𝐴 ·R 𝐶) +R (-1R ·R (𝐵 ·R 𝐷))), ((𝐵 ·R 𝐶) +R (𝐴 ·R 𝐷))⟩)
30 df-mul 6958 . . 3 · = {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) ∧ ∃𝑤𝑣𝑢𝑓((𝑥 = ⟨𝑤, 𝑣⟩ ∧ 𝑦 = ⟨𝑢, 𝑓⟩) ∧ 𝑧 = ⟨((𝑤 ·R 𝑢) +R (-1R ·R (𝑣 ·R 𝑓))), ((𝑣 ·R 𝑢) +R (𝑤 ·R 𝑓))⟩))}
31 df-c 6952 . . . . . . 7 ℂ = (R × R)
3231eleq2i 2120 . . . . . 6 (𝑥 ∈ ℂ ↔ 𝑥 ∈ (R × R))
3331eleq2i 2120 . . . . . 6 (𝑦 ∈ ℂ ↔ 𝑦 ∈ (R × R))
3432, 33anbi12i 441 . . . . 5 ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) ↔ (𝑥 ∈ (R × R) ∧ 𝑦 ∈ (R × R)))
3534anbi1i 439 . . . 4 (((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) ∧ ∃𝑤𝑣𝑢𝑓((𝑥 = ⟨𝑤, 𝑣⟩ ∧ 𝑦 = ⟨𝑢, 𝑓⟩) ∧ 𝑧 = ⟨((𝑤 ·R 𝑢) +R (-1R ·R (𝑣 ·R 𝑓))), ((𝑣 ·R 𝑢) +R (𝑤 ·R 𝑓))⟩)) ↔ ((𝑥 ∈ (R × R) ∧ 𝑦 ∈ (R × R)) ∧ ∃𝑤𝑣𝑢𝑓((𝑥 = ⟨𝑤, 𝑣⟩ ∧ 𝑦 = ⟨𝑢, 𝑓⟩) ∧ 𝑧 = ⟨((𝑤 ·R 𝑢) +R (-1R ·R (𝑣 ·R 𝑓))), ((𝑣 ·R 𝑢) +R (𝑤 ·R 𝑓))⟩)))
3635oprabbii 5587 . . 3 {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) ∧ ∃𝑤𝑣𝑢𝑓((𝑥 = ⟨𝑤, 𝑣⟩ ∧ 𝑦 = ⟨𝑢, 𝑓⟩) ∧ 𝑧 = ⟨((𝑤 ·R 𝑢) +R (-1R ·R (𝑣 ·R 𝑓))), ((𝑣 ·R 𝑢) +R (𝑤 ·R 𝑓))⟩))} = {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ((𝑥 ∈ (R × R) ∧ 𝑦 ∈ (R × R)) ∧ ∃𝑤𝑣𝑢𝑓((𝑥 = ⟨𝑤, 𝑣⟩ ∧ 𝑦 = ⟨𝑢, 𝑓⟩) ∧ 𝑧 = ⟨((𝑤 ·R 𝑢) +R (-1R ·R (𝑣 ·R 𝑓))), ((𝑣 ·R 𝑢) +R (𝑤 ·R 𝑓))⟩))}
3730, 36eqtri 2076 . 2 · = {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ((𝑥 ∈ (R × R) ∧ 𝑦 ∈ (R × R)) ∧ ∃𝑤𝑣𝑢𝑓((𝑥 = ⟨𝑤, 𝑣⟩ ∧ 𝑦 = ⟨𝑢, 𝑓⟩) ∧ 𝑧 = ⟨((𝑤 ·R 𝑢) +R (-1R ·R (𝑣 ·R 𝑓))), ((𝑣 ·R 𝑢) +R (𝑤 ·R 𝑓))⟩))}
3817, 29, 37ovi3 5664 1 (((𝐴R𝐵R) ∧ (𝐶R𝐷R)) → (⟨𝐴, 𝐵⟩ · ⟨𝐶, 𝐷⟩) = ⟨((𝐴 ·R 𝐶) +R (-1R ·R (𝐵 ·R 𝐷))), ((𝐵 ·R 𝐶) +R (𝐴 ·R 𝐷))⟩)
 Colors of variables: wff set class Syntax hints:   → wi 4   ∧ wa 101   = wceq 1259  ∃wex 1397   ∈ wcel 1409  ⟨cop 3405   × cxp 4370  (class class class)co 5539  {coprab 5540  Rcnr 6452  -1Rcm1r 6455   +R cplr 6456   ·R cmr 6457  ℂcc 6944   · cmul 6951 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 103  ax-ia2 104  ax-ia3 105  ax-in1 554  ax-in2 555  ax-io 640  ax-5 1352  ax-7 1353  ax-gen 1354  ax-ie1 1398  ax-ie2 1399  ax-8 1411  ax-10 1412  ax-11 1413  ax-i12 1414  ax-bndl 1415  ax-4 1416  ax-13 1420  ax-14 1421  ax-17 1435  ax-i9 1439  ax-ial 1443  ax-i5r 1444  ax-ext 2038  ax-coll 3899  ax-sep 3902  ax-nul 3910  ax-pow 3954  ax-pr 3971  ax-un 4197  ax-setind 4289  ax-iinf 4338 This theorem depends on definitions:  df-bi 114  df-dc 754  df-3or 897  df-3an 898  df-tru 1262  df-fal 1265  df-nf 1366  df-sb 1662  df-eu 1919  df-mo 1920  df-clab 2043  df-cleq 2049  df-clel 2052  df-nfc 2183  df-ne 2221  df-ral 2328  df-rex 2329  df-reu 2330  df-rab 2332  df-v 2576  df-sbc 2787  df-csb 2880  df-dif 2947  df-un 2949  df-in 2951  df-ss 2958  df-nul 3252  df-pw 3388  df-sn 3408  df-pr 3409  df-op 3411  df-uni 3608  df-int 3643  df-iun 3686  df-br 3792  df-opab 3846  df-mpt 3847  df-tr 3882  df-eprel 4053  df-id 4057  df-po 4060  df-iso 4061  df-iord 4130  df-on 4132  df-suc 4135  df-iom 4341  df-xp 4378  df-rel 4379  df-cnv 4380  df-co 4381  df-dm 4382  df-rn 4383  df-res 4384  df-ima 4385  df-iota 4894  df-fun 4931  df-fn 4932  df-f 4933  df-f1 4934  df-fo 4935  df-f1o 4936  df-fv 4937  df-ov 5542  df-oprab 5543  df-mpt2 5544  df-1st 5794  df-2nd 5795  df-recs 5950  df-irdg 5987  df-1o 6031  df-2o 6032  df-oadd 6035  df-omul 6036  df-er 6136  df-ec 6138  df-qs 6142  df-ni 6459  df-pli 6460  df-mi 6461  df-lti 6462  df-plpq 6499  df-mpq 6500  df-enq 6502  df-nqqs 6503  df-plqqs 6504  df-mqqs 6505  df-1nqqs 6506  df-rq 6507  df-ltnqqs 6508  df-enq0 6579  df-nq0 6580  df-0nq0 6581  df-plq0 6582  df-mq0 6583  df-inp 6621  df-i1p 6622  df-iplp 6623  df-imp 6624  df-enr 6868  df-nr 6869  df-plr 6870  df-mr 6871  df-m1r 6875  df-c 6952  df-mul 6958 This theorem is referenced by:  mulresr  6971  mulcnsrec  6976  axmulcl  6999  axi2m1  7006  axcnre  7012
 Copyright terms: Public domain W3C validator