ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mulpipqqs GIF version

Theorem mulpipqqs 7181
Description: Multiplication of positive fractions in terms of positive integers. (Contributed by NM, 28-Aug-1995.)
Assertion
Ref Expression
mulpipqqs (((𝐴N𝐵N) ∧ (𝐶N𝐷N)) → ([⟨𝐴, 𝐵⟩] ~Q ·Q [⟨𝐶, 𝐷⟩] ~Q ) = [⟨(𝐴 ·N 𝐶), (𝐵 ·N 𝐷)⟩] ~Q )

Proof of Theorem mulpipqqs
Dummy variables 𝑥 𝑦 𝑧 𝑤 𝑣 𝑢 𝑡 𝑠 𝑓 𝑔 𝑎 𝑏 𝑐 𝑑 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 mulclpi 7136 . . . 4 ((𝐴N𝐶N) → (𝐴 ·N 𝐶) ∈ N)
2 mulclpi 7136 . . . 4 ((𝐵N𝐷N) → (𝐵 ·N 𝐷) ∈ N)
3 opelxpi 4571 . . . 4 (((𝐴 ·N 𝐶) ∈ N ∧ (𝐵 ·N 𝐷) ∈ N) → ⟨(𝐴 ·N 𝐶), (𝐵 ·N 𝐷)⟩ ∈ (N × N))
41, 2, 3syl2an 287 . . 3 (((𝐴N𝐶N) ∧ (𝐵N𝐷N)) → ⟨(𝐴 ·N 𝐶), (𝐵 ·N 𝐷)⟩ ∈ (N × N))
54an4s 577 . 2 (((𝐴N𝐵N) ∧ (𝐶N𝐷N)) → ⟨(𝐴 ·N 𝐶), (𝐵 ·N 𝐷)⟩ ∈ (N × N))
6 mulclpi 7136 . . . 4 ((𝑎N𝑔N) → (𝑎 ·N 𝑔) ∈ N)
7 mulclpi 7136 . . . 4 ((𝑏NN) → (𝑏 ·N ) ∈ N)
8 opelxpi 4571 . . . 4 (((𝑎 ·N 𝑔) ∈ N ∧ (𝑏 ·N ) ∈ N) → ⟨(𝑎 ·N 𝑔), (𝑏 ·N )⟩ ∈ (N × N))
96, 7, 8syl2an 287 . . 3 (((𝑎N𝑔N) ∧ (𝑏NN)) → ⟨(𝑎 ·N 𝑔), (𝑏 ·N )⟩ ∈ (N × N))
109an4s 577 . 2 (((𝑎N𝑏N) ∧ (𝑔NN)) → ⟨(𝑎 ·N 𝑔), (𝑏 ·N )⟩ ∈ (N × N))
11 mulclpi 7136 . . . 4 ((𝑐N𝑡N) → (𝑐 ·N 𝑡) ∈ N)
12 mulclpi 7136 . . . 4 ((𝑑N𝑠N) → (𝑑 ·N 𝑠) ∈ N)
13 opelxpi 4571 . . . 4 (((𝑐 ·N 𝑡) ∈ N ∧ (𝑑 ·N 𝑠) ∈ N) → ⟨(𝑐 ·N 𝑡), (𝑑 ·N 𝑠)⟩ ∈ (N × N))
1411, 12, 13syl2an 287 . . 3 (((𝑐N𝑡N) ∧ (𝑑N𝑠N)) → ⟨(𝑐 ·N 𝑡), (𝑑 ·N 𝑠)⟩ ∈ (N × N))
1514an4s 577 . 2 (((𝑐N𝑑N) ∧ (𝑡N𝑠N)) → ⟨(𝑐 ·N 𝑡), (𝑑 ·N 𝑠)⟩ ∈ (N × N))
16 enqex 7168 . 2 ~Q ∈ V
17 enqer 7166 . 2 ~Q Er (N × N)
18 df-enq 7155 . 2 ~Q = {⟨𝑥, 𝑦⟩ ∣ ((𝑥 ∈ (N × N) ∧ 𝑦 ∈ (N × N)) ∧ ∃𝑧𝑤𝑣𝑢((𝑥 = ⟨𝑧, 𝑤⟩ ∧ 𝑦 = ⟨𝑣, 𝑢⟩) ∧ (𝑧 ·N 𝑢) = (𝑤 ·N 𝑣)))}
19 simpll 518 . . . 4 (((𝑧 = 𝑎𝑤 = 𝑏) ∧ (𝑣 = 𝑐𝑢 = 𝑑)) → 𝑧 = 𝑎)
20 simprr 521 . . . 4 (((𝑧 = 𝑎𝑤 = 𝑏) ∧ (𝑣 = 𝑐𝑢 = 𝑑)) → 𝑢 = 𝑑)
2119, 20oveq12d 5792 . . 3 (((𝑧 = 𝑎𝑤 = 𝑏) ∧ (𝑣 = 𝑐𝑢 = 𝑑)) → (𝑧 ·N 𝑢) = (𝑎 ·N 𝑑))
22 simplr 519 . . . 4 (((𝑧 = 𝑎𝑤 = 𝑏) ∧ (𝑣 = 𝑐𝑢 = 𝑑)) → 𝑤 = 𝑏)
23 simprl 520 . . . 4 (((𝑧 = 𝑎𝑤 = 𝑏) ∧ (𝑣 = 𝑐𝑢 = 𝑑)) → 𝑣 = 𝑐)
2422, 23oveq12d 5792 . . 3 (((𝑧 = 𝑎𝑤 = 𝑏) ∧ (𝑣 = 𝑐𝑢 = 𝑑)) → (𝑤 ·N 𝑣) = (𝑏 ·N 𝑐))
2521, 24eqeq12d 2154 . 2 (((𝑧 = 𝑎𝑤 = 𝑏) ∧ (𝑣 = 𝑐𝑢 = 𝑑)) → ((𝑧 ·N 𝑢) = (𝑤 ·N 𝑣) ↔ (𝑎 ·N 𝑑) = (𝑏 ·N 𝑐)))
26 simpll 518 . . . 4 (((𝑧 = 𝑔𝑤 = ) ∧ (𝑣 = 𝑡𝑢 = 𝑠)) → 𝑧 = 𝑔)
27 simprr 521 . . . 4 (((𝑧 = 𝑔𝑤 = ) ∧ (𝑣 = 𝑡𝑢 = 𝑠)) → 𝑢 = 𝑠)
2826, 27oveq12d 5792 . . 3 (((𝑧 = 𝑔𝑤 = ) ∧ (𝑣 = 𝑡𝑢 = 𝑠)) → (𝑧 ·N 𝑢) = (𝑔 ·N 𝑠))
29 simplr 519 . . . 4 (((𝑧 = 𝑔𝑤 = ) ∧ (𝑣 = 𝑡𝑢 = 𝑠)) → 𝑤 = )
30 simprl 520 . . . 4 (((𝑧 = 𝑔𝑤 = ) ∧ (𝑣 = 𝑡𝑢 = 𝑠)) → 𝑣 = 𝑡)
3129, 30oveq12d 5792 . . 3 (((𝑧 = 𝑔𝑤 = ) ∧ (𝑣 = 𝑡𝑢 = 𝑠)) → (𝑤 ·N 𝑣) = ( ·N 𝑡))
3228, 31eqeq12d 2154 . 2 (((𝑧 = 𝑔𝑤 = ) ∧ (𝑣 = 𝑡𝑢 = 𝑠)) → ((𝑧 ·N 𝑢) = (𝑤 ·N 𝑣) ↔ (𝑔 ·N 𝑠) = ( ·N 𝑡)))
33 dfmpq2 7163 . 2 ·pQ = {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ((𝑥 ∈ (N × N) ∧ 𝑦 ∈ (N × N)) ∧ ∃𝑤𝑣𝑢𝑓((𝑥 = ⟨𝑤, 𝑣⟩ ∧ 𝑦 = ⟨𝑢, 𝑓⟩) ∧ 𝑧 = ⟨(𝑤 ·N 𝑢), (𝑣 ·N 𝑓)⟩))}
34 simpll 518 . . . 4 (((𝑤 = 𝑎𝑣 = 𝑏) ∧ (𝑢 = 𝑔𝑓 = )) → 𝑤 = 𝑎)
35 simprl 520 . . . 4 (((𝑤 = 𝑎𝑣 = 𝑏) ∧ (𝑢 = 𝑔𝑓 = )) → 𝑢 = 𝑔)
3634, 35oveq12d 5792 . . 3 (((𝑤 = 𝑎𝑣 = 𝑏) ∧ (𝑢 = 𝑔𝑓 = )) → (𝑤 ·N 𝑢) = (𝑎 ·N 𝑔))
37 simplr 519 . . . 4 (((𝑤 = 𝑎𝑣 = 𝑏) ∧ (𝑢 = 𝑔𝑓 = )) → 𝑣 = 𝑏)
38 simprr 521 . . . 4 (((𝑤 = 𝑎𝑣 = 𝑏) ∧ (𝑢 = 𝑔𝑓 = )) → 𝑓 = )
3937, 38oveq12d 5792 . . 3 (((𝑤 = 𝑎𝑣 = 𝑏) ∧ (𝑢 = 𝑔𝑓 = )) → (𝑣 ·N 𝑓) = (𝑏 ·N ))
4036, 39opeq12d 3713 . 2 (((𝑤 = 𝑎𝑣 = 𝑏) ∧ (𝑢 = 𝑔𝑓 = )) → ⟨(𝑤 ·N 𝑢), (𝑣 ·N 𝑓)⟩ = ⟨(𝑎 ·N 𝑔), (𝑏 ·N )⟩)
41 simpll 518 . . . 4 (((𝑤 = 𝑐𝑣 = 𝑑) ∧ (𝑢 = 𝑡𝑓 = 𝑠)) → 𝑤 = 𝑐)
42 simprl 520 . . . 4 (((𝑤 = 𝑐𝑣 = 𝑑) ∧ (𝑢 = 𝑡𝑓 = 𝑠)) → 𝑢 = 𝑡)
4341, 42oveq12d 5792 . . 3 (((𝑤 = 𝑐𝑣 = 𝑑) ∧ (𝑢 = 𝑡𝑓 = 𝑠)) → (𝑤 ·N 𝑢) = (𝑐 ·N 𝑡))
44 simplr 519 . . . 4 (((𝑤 = 𝑐𝑣 = 𝑑) ∧ (𝑢 = 𝑡𝑓 = 𝑠)) → 𝑣 = 𝑑)
45 simprr 521 . . . 4 (((𝑤 = 𝑐𝑣 = 𝑑) ∧ (𝑢 = 𝑡𝑓 = 𝑠)) → 𝑓 = 𝑠)
4644, 45oveq12d 5792 . . 3 (((𝑤 = 𝑐𝑣 = 𝑑) ∧ (𝑢 = 𝑡𝑓 = 𝑠)) → (𝑣 ·N 𝑓) = (𝑑 ·N 𝑠))
4743, 46opeq12d 3713 . 2 (((𝑤 = 𝑐𝑣 = 𝑑) ∧ (𝑢 = 𝑡𝑓 = 𝑠)) → ⟨(𝑤 ·N 𝑢), (𝑣 ·N 𝑓)⟩ = ⟨(𝑐 ·N 𝑡), (𝑑 ·N 𝑠)⟩)
48 simpll 518 . . . 4 (((𝑤 = 𝐴𝑣 = 𝐵) ∧ (𝑢 = 𝐶𝑓 = 𝐷)) → 𝑤 = 𝐴)
49 simprl 520 . . . 4 (((𝑤 = 𝐴𝑣 = 𝐵) ∧ (𝑢 = 𝐶𝑓 = 𝐷)) → 𝑢 = 𝐶)
5048, 49oveq12d 5792 . . 3 (((𝑤 = 𝐴𝑣 = 𝐵) ∧ (𝑢 = 𝐶𝑓 = 𝐷)) → (𝑤 ·N 𝑢) = (𝐴 ·N 𝐶))
51 simplr 519 . . . 4 (((𝑤 = 𝐴𝑣 = 𝐵) ∧ (𝑢 = 𝐶𝑓 = 𝐷)) → 𝑣 = 𝐵)
52 simprr 521 . . . 4 (((𝑤 = 𝐴𝑣 = 𝐵) ∧ (𝑢 = 𝐶𝑓 = 𝐷)) → 𝑓 = 𝐷)
5351, 52oveq12d 5792 . . 3 (((𝑤 = 𝐴𝑣 = 𝐵) ∧ (𝑢 = 𝐶𝑓 = 𝐷)) → (𝑣 ·N 𝑓) = (𝐵 ·N 𝐷))
5450, 53opeq12d 3713 . 2 (((𝑤 = 𝐴𝑣 = 𝐵) ∧ (𝑢 = 𝐶𝑓 = 𝐷)) → ⟨(𝑤 ·N 𝑢), (𝑣 ·N 𝑓)⟩ = ⟨(𝐴 ·N 𝐶), (𝐵 ·N 𝐷)⟩)
55 df-mqqs 7158 . 2 ·Q = {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ((𝑥Q𝑦Q) ∧ ∃𝑎𝑏𝑐𝑑((𝑥 = [⟨𝑎, 𝑏⟩] ~Q𝑦 = [⟨𝑐, 𝑑⟩] ~Q ) ∧ 𝑧 = [(⟨𝑎, 𝑏⟩ ·pQ𝑐, 𝑑⟩)] ~Q ))}
56 df-nqqs 7156 . 2 Q = ((N × N) / ~Q )
57 mulcmpblnq 7176 . 2 ((((𝑎N𝑏N) ∧ (𝑐N𝑑N)) ∧ ((𝑔NN) ∧ (𝑡N𝑠N))) → (((𝑎 ·N 𝑑) = (𝑏 ·N 𝑐) ∧ (𝑔 ·N 𝑠) = ( ·N 𝑡)) → ⟨(𝑎 ·N 𝑔), (𝑏 ·N )⟩ ~Q ⟨(𝑐 ·N 𝑡), (𝑑 ·N 𝑠)⟩))
585, 10, 15, 16, 17, 18, 25, 32, 33, 40, 47, 54, 55, 56, 57oviec 6535 1 (((𝐴N𝐵N) ∧ (𝐶N𝐷N)) → ([⟨𝐴, 𝐵⟩] ~Q ·Q [⟨𝐶, 𝐷⟩] ~Q ) = [⟨(𝐴 ·N 𝐶), (𝐵 ·N 𝐷)⟩] ~Q )
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103   = wceq 1331  wcel 1480  cop 3530   × cxp 4537  (class class class)co 5774  [cec 6427  Ncnpi 7080   ·N cmi 7082   ·pQ cmpq 7085   ~Q ceq 7087  Qcnq 7088   ·Q cmq 7091
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-13 1491  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2121  ax-coll 4043  ax-sep 4046  ax-nul 4054  ax-pow 4098  ax-pr 4131  ax-un 4355  ax-setind 4452  ax-iinf 4502
This theorem depends on definitions:  df-bi 116  df-dc 820  df-3or 963  df-3an 964  df-tru 1334  df-fal 1337  df-nf 1437  df-sb 1736  df-eu 2002  df-mo 2003  df-clab 2126  df-cleq 2132  df-clel 2135  df-nfc 2270  df-ne 2309  df-ral 2421  df-rex 2422  df-reu 2423  df-rab 2425  df-v 2688  df-sbc 2910  df-csb 3004  df-dif 3073  df-un 3075  df-in 3077  df-ss 3084  df-nul 3364  df-pw 3512  df-sn 3533  df-pr 3534  df-op 3536  df-uni 3737  df-int 3772  df-iun 3815  df-br 3930  df-opab 3990  df-mpt 3991  df-tr 4027  df-id 4215  df-iord 4288  df-on 4290  df-suc 4293  df-iom 4505  df-xp 4545  df-rel 4546  df-cnv 4547  df-co 4548  df-dm 4549  df-rn 4550  df-res 4551  df-ima 4552  df-iota 5088  df-fun 5125  df-fn 5126  df-f 5127  df-f1 5128  df-fo 5129  df-f1o 5130  df-fv 5131  df-ov 5777  df-oprab 5778  df-mpo 5779  df-1st 6038  df-2nd 6039  df-recs 6202  df-irdg 6267  df-oadd 6317  df-omul 6318  df-er 6429  df-ec 6431  df-qs 6435  df-ni 7112  df-mi 7114  df-mpq 7153  df-enq 7155  df-nqqs 7156  df-mqqs 7158
This theorem is referenced by:  mulclnq  7184  mulcomnqg  7191  mulassnqg  7192  distrnqg  7195  mulidnq  7197  recexnq  7198  ltmnqg  7209  nqnq0m  7263
  Copyright terms: Public domain W3C validator