Intuitionistic Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >  mulpipqqs GIF version

Theorem mulpipqqs 6625
 Description: Multiplication of positive fractions in terms of positive integers. (Contributed by NM, 28-Aug-1995.)
Assertion
Ref Expression
mulpipqqs (((𝐴N𝐵N) ∧ (𝐶N𝐷N)) → ([⟨𝐴, 𝐵⟩] ~Q ·Q [⟨𝐶, 𝐷⟩] ~Q ) = [⟨(𝐴 ·N 𝐶), (𝐵 ·N 𝐷)⟩] ~Q )

Proof of Theorem mulpipqqs
Dummy variables 𝑥 𝑦 𝑧 𝑤 𝑣 𝑢 𝑡 𝑠 𝑓 𝑔 𝑎 𝑏 𝑐 𝑑 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 mulclpi 6580 . . . 4 ((𝐴N𝐶N) → (𝐴 ·N 𝐶) ∈ N)
2 mulclpi 6580 . . . 4 ((𝐵N𝐷N) → (𝐵 ·N 𝐷) ∈ N)
3 opelxpi 4402 . . . 4 (((𝐴 ·N 𝐶) ∈ N ∧ (𝐵 ·N 𝐷) ∈ N) → ⟨(𝐴 ·N 𝐶), (𝐵 ·N 𝐷)⟩ ∈ (N × N))
41, 2, 3syl2an 283 . . 3 (((𝐴N𝐶N) ∧ (𝐵N𝐷N)) → ⟨(𝐴 ·N 𝐶), (𝐵 ·N 𝐷)⟩ ∈ (N × N))
54an4s 553 . 2 (((𝐴N𝐵N) ∧ (𝐶N𝐷N)) → ⟨(𝐴 ·N 𝐶), (𝐵 ·N 𝐷)⟩ ∈ (N × N))
6 mulclpi 6580 . . . 4 ((𝑎N𝑔N) → (𝑎 ·N 𝑔) ∈ N)
7 mulclpi 6580 . . . 4 ((𝑏NN) → (𝑏 ·N ) ∈ N)
8 opelxpi 4402 . . . 4 (((𝑎 ·N 𝑔) ∈ N ∧ (𝑏 ·N ) ∈ N) → ⟨(𝑎 ·N 𝑔), (𝑏 ·N )⟩ ∈ (N × N))
96, 7, 8syl2an 283 . . 3 (((𝑎N𝑔N) ∧ (𝑏NN)) → ⟨(𝑎 ·N 𝑔), (𝑏 ·N )⟩ ∈ (N × N))
109an4s 553 . 2 (((𝑎N𝑏N) ∧ (𝑔NN)) → ⟨(𝑎 ·N 𝑔), (𝑏 ·N )⟩ ∈ (N × N))
11 mulclpi 6580 . . . 4 ((𝑐N𝑡N) → (𝑐 ·N 𝑡) ∈ N)
12 mulclpi 6580 . . . 4 ((𝑑N𝑠N) → (𝑑 ·N 𝑠) ∈ N)
13 opelxpi 4402 . . . 4 (((𝑐 ·N 𝑡) ∈ N ∧ (𝑑 ·N 𝑠) ∈ N) → ⟨(𝑐 ·N 𝑡), (𝑑 ·N 𝑠)⟩ ∈ (N × N))
1411, 12, 13syl2an 283 . . 3 (((𝑐N𝑡N) ∧ (𝑑N𝑠N)) → ⟨(𝑐 ·N 𝑡), (𝑑 ·N 𝑠)⟩ ∈ (N × N))
1514an4s 553 . 2 (((𝑐N𝑑N) ∧ (𝑡N𝑠N)) → ⟨(𝑐 ·N 𝑡), (𝑑 ·N 𝑠)⟩ ∈ (N × N))
16 enqex 6612 . 2 ~Q ∈ V
17 enqer 6610 . 2 ~Q Er (N × N)
18 df-enq 6599 . 2 ~Q = {⟨𝑥, 𝑦⟩ ∣ ((𝑥 ∈ (N × N) ∧ 𝑦 ∈ (N × N)) ∧ ∃𝑧𝑤𝑣𝑢((𝑥 = ⟨𝑧, 𝑤⟩ ∧ 𝑦 = ⟨𝑣, 𝑢⟩) ∧ (𝑧 ·N 𝑢) = (𝑤 ·N 𝑣)))}
19 simpll 496 . . . 4 (((𝑧 = 𝑎𝑤 = 𝑏) ∧ (𝑣 = 𝑐𝑢 = 𝑑)) → 𝑧 = 𝑎)
20 simprr 499 . . . 4 (((𝑧 = 𝑎𝑤 = 𝑏) ∧ (𝑣 = 𝑐𝑢 = 𝑑)) → 𝑢 = 𝑑)
2119, 20oveq12d 5561 . . 3 (((𝑧 = 𝑎𝑤 = 𝑏) ∧ (𝑣 = 𝑐𝑢 = 𝑑)) → (𝑧 ·N 𝑢) = (𝑎 ·N 𝑑))
22 simplr 497 . . . 4 (((𝑧 = 𝑎𝑤 = 𝑏) ∧ (𝑣 = 𝑐𝑢 = 𝑑)) → 𝑤 = 𝑏)
23 simprl 498 . . . 4 (((𝑧 = 𝑎𝑤 = 𝑏) ∧ (𝑣 = 𝑐𝑢 = 𝑑)) → 𝑣 = 𝑐)
2422, 23oveq12d 5561 . . 3 (((𝑧 = 𝑎𝑤 = 𝑏) ∧ (𝑣 = 𝑐𝑢 = 𝑑)) → (𝑤 ·N 𝑣) = (𝑏 ·N 𝑐))
2521, 24eqeq12d 2096 . 2 (((𝑧 = 𝑎𝑤 = 𝑏) ∧ (𝑣 = 𝑐𝑢 = 𝑑)) → ((𝑧 ·N 𝑢) = (𝑤 ·N 𝑣) ↔ (𝑎 ·N 𝑑) = (𝑏 ·N 𝑐)))
26 simpll 496 . . . 4 (((𝑧 = 𝑔𝑤 = ) ∧ (𝑣 = 𝑡𝑢 = 𝑠)) → 𝑧 = 𝑔)
27 simprr 499 . . . 4 (((𝑧 = 𝑔𝑤 = ) ∧ (𝑣 = 𝑡𝑢 = 𝑠)) → 𝑢 = 𝑠)
2826, 27oveq12d 5561 . . 3 (((𝑧 = 𝑔𝑤 = ) ∧ (𝑣 = 𝑡𝑢 = 𝑠)) → (𝑧 ·N 𝑢) = (𝑔 ·N 𝑠))
29 simplr 497 . . . 4 (((𝑧 = 𝑔𝑤 = ) ∧ (𝑣 = 𝑡𝑢 = 𝑠)) → 𝑤 = )
30 simprl 498 . . . 4 (((𝑧 = 𝑔𝑤 = ) ∧ (𝑣 = 𝑡𝑢 = 𝑠)) → 𝑣 = 𝑡)
3129, 30oveq12d 5561 . . 3 (((𝑧 = 𝑔𝑤 = ) ∧ (𝑣 = 𝑡𝑢 = 𝑠)) → (𝑤 ·N 𝑣) = ( ·N 𝑡))
3228, 31eqeq12d 2096 . 2 (((𝑧 = 𝑔𝑤 = ) ∧ (𝑣 = 𝑡𝑢 = 𝑠)) → ((𝑧 ·N 𝑢) = (𝑤 ·N 𝑣) ↔ (𝑔 ·N 𝑠) = ( ·N 𝑡)))
33 dfmpq2 6607 . 2 ·pQ = {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ((𝑥 ∈ (N × N) ∧ 𝑦 ∈ (N × N)) ∧ ∃𝑤𝑣𝑢𝑓((𝑥 = ⟨𝑤, 𝑣⟩ ∧ 𝑦 = ⟨𝑢, 𝑓⟩) ∧ 𝑧 = ⟨(𝑤 ·N 𝑢), (𝑣 ·N 𝑓)⟩))}
34 simpll 496 . . . 4 (((𝑤 = 𝑎𝑣 = 𝑏) ∧ (𝑢 = 𝑔𝑓 = )) → 𝑤 = 𝑎)
35 simprl 498 . . . 4 (((𝑤 = 𝑎𝑣 = 𝑏) ∧ (𝑢 = 𝑔𝑓 = )) → 𝑢 = 𝑔)
3634, 35oveq12d 5561 . . 3 (((𝑤 = 𝑎𝑣 = 𝑏) ∧ (𝑢 = 𝑔𝑓 = )) → (𝑤 ·N 𝑢) = (𝑎 ·N 𝑔))
37 simplr 497 . . . 4 (((𝑤 = 𝑎𝑣 = 𝑏) ∧ (𝑢 = 𝑔𝑓 = )) → 𝑣 = 𝑏)
38 simprr 499 . . . 4 (((𝑤 = 𝑎𝑣 = 𝑏) ∧ (𝑢 = 𝑔𝑓 = )) → 𝑓 = )
3937, 38oveq12d 5561 . . 3 (((𝑤 = 𝑎𝑣 = 𝑏) ∧ (𝑢 = 𝑔𝑓 = )) → (𝑣 ·N 𝑓) = (𝑏 ·N ))
4036, 39opeq12d 3586 . 2 (((𝑤 = 𝑎𝑣 = 𝑏) ∧ (𝑢 = 𝑔𝑓 = )) → ⟨(𝑤 ·N 𝑢), (𝑣 ·N 𝑓)⟩ = ⟨(𝑎 ·N 𝑔), (𝑏 ·N )⟩)
41 simpll 496 . . . 4 (((𝑤 = 𝑐𝑣 = 𝑑) ∧ (𝑢 = 𝑡𝑓 = 𝑠)) → 𝑤 = 𝑐)
42 simprl 498 . . . 4 (((𝑤 = 𝑐𝑣 = 𝑑) ∧ (𝑢 = 𝑡𝑓 = 𝑠)) → 𝑢 = 𝑡)
4341, 42oveq12d 5561 . . 3 (((𝑤 = 𝑐𝑣 = 𝑑) ∧ (𝑢 = 𝑡𝑓 = 𝑠)) → (𝑤 ·N 𝑢) = (𝑐 ·N 𝑡))
44 simplr 497 . . . 4 (((𝑤 = 𝑐𝑣 = 𝑑) ∧ (𝑢 = 𝑡𝑓 = 𝑠)) → 𝑣 = 𝑑)
45 simprr 499 . . . 4 (((𝑤 = 𝑐𝑣 = 𝑑) ∧ (𝑢 = 𝑡𝑓 = 𝑠)) → 𝑓 = 𝑠)
4644, 45oveq12d 5561 . . 3 (((𝑤 = 𝑐𝑣 = 𝑑) ∧ (𝑢 = 𝑡𝑓 = 𝑠)) → (𝑣 ·N 𝑓) = (𝑑 ·N 𝑠))
4743, 46opeq12d 3586 . 2 (((𝑤 = 𝑐𝑣 = 𝑑) ∧ (𝑢 = 𝑡𝑓 = 𝑠)) → ⟨(𝑤 ·N 𝑢), (𝑣 ·N 𝑓)⟩ = ⟨(𝑐 ·N 𝑡), (𝑑 ·N 𝑠)⟩)
48 simpll 496 . . . 4 (((𝑤 = 𝐴𝑣 = 𝐵) ∧ (𝑢 = 𝐶𝑓 = 𝐷)) → 𝑤 = 𝐴)
49 simprl 498 . . . 4 (((𝑤 = 𝐴𝑣 = 𝐵) ∧ (𝑢 = 𝐶𝑓 = 𝐷)) → 𝑢 = 𝐶)
5048, 49oveq12d 5561 . . 3 (((𝑤 = 𝐴𝑣 = 𝐵) ∧ (𝑢 = 𝐶𝑓 = 𝐷)) → (𝑤 ·N 𝑢) = (𝐴 ·N 𝐶))
51 simplr 497 . . . 4 (((𝑤 = 𝐴𝑣 = 𝐵) ∧ (𝑢 = 𝐶𝑓 = 𝐷)) → 𝑣 = 𝐵)
52 simprr 499 . . . 4 (((𝑤 = 𝐴𝑣 = 𝐵) ∧ (𝑢 = 𝐶𝑓 = 𝐷)) → 𝑓 = 𝐷)
5351, 52oveq12d 5561 . . 3 (((𝑤 = 𝐴𝑣 = 𝐵) ∧ (𝑢 = 𝐶𝑓 = 𝐷)) → (𝑣 ·N 𝑓) = (𝐵 ·N 𝐷))
5450, 53opeq12d 3586 . 2 (((𝑤 = 𝐴𝑣 = 𝐵) ∧ (𝑢 = 𝐶𝑓 = 𝐷)) → ⟨(𝑤 ·N 𝑢), (𝑣 ·N 𝑓)⟩ = ⟨(𝐴 ·N 𝐶), (𝐵 ·N 𝐷)⟩)
55 df-mqqs 6602 . 2 ·Q = {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ((𝑥Q𝑦Q) ∧ ∃𝑎𝑏𝑐𝑑((𝑥 = [⟨𝑎, 𝑏⟩] ~Q𝑦 = [⟨𝑐, 𝑑⟩] ~Q ) ∧ 𝑧 = [(⟨𝑎, 𝑏⟩ ·pQ𝑐, 𝑑⟩)] ~Q ))}
56 df-nqqs 6600 . 2 Q = ((N × N) / ~Q )
57 mulcmpblnq 6620 . 2 ((((𝑎N𝑏N) ∧ (𝑐N𝑑N)) ∧ ((𝑔NN) ∧ (𝑡N𝑠N))) → (((𝑎 ·N 𝑑) = (𝑏 ·N 𝑐) ∧ (𝑔 ·N 𝑠) = ( ·N 𝑡)) → ⟨(𝑎 ·N 𝑔), (𝑏 ·N )⟩ ~Q ⟨(𝑐 ·N 𝑡), (𝑑 ·N 𝑠)⟩))
585, 10, 15, 16, 17, 18, 25, 32, 33, 40, 47, 54, 55, 56, 57oviec 6278 1 (((𝐴N𝐵N) ∧ (𝐶N𝐷N)) → ([⟨𝐴, 𝐵⟩] ~Q ·Q [⟨𝐶, 𝐷⟩] ~Q ) = [⟨(𝐴 ·N 𝐶), (𝐵 ·N 𝐷)⟩] ~Q )
 Colors of variables: wff set class Syntax hints:   → wi 4   ∧ wa 102   = wceq 1285   ∈ wcel 1434  ⟨cop 3409   × cxp 4369  (class class class)co 5543  [cec 6170  Ncnpi 6524   ·N cmi 6526   ·pQ cmpq 6529   ~Q ceq 6531  Qcnq 6532   ·Q cmq 6535 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 577  ax-in2 578  ax-io 663  ax-5 1377  ax-7 1378  ax-gen 1379  ax-ie1 1423  ax-ie2 1424  ax-8 1436  ax-10 1437  ax-11 1438  ax-i12 1439  ax-bndl 1440  ax-4 1441  ax-13 1445  ax-14 1446  ax-17 1460  ax-i9 1464  ax-ial 1468  ax-i5r 1469  ax-ext 2064  ax-coll 3901  ax-sep 3904  ax-nul 3912  ax-pow 3956  ax-pr 3972  ax-un 4196  ax-setind 4288  ax-iinf 4337 This theorem depends on definitions:  df-bi 115  df-dc 777  df-3or 921  df-3an 922  df-tru 1288  df-fal 1291  df-nf 1391  df-sb 1687  df-eu 1945  df-mo 1946  df-clab 2069  df-cleq 2075  df-clel 2078  df-nfc 2209  df-ne 2247  df-ral 2354  df-rex 2355  df-reu 2356  df-rab 2358  df-v 2604  df-sbc 2817  df-csb 2910  df-dif 2976  df-un 2978  df-in 2980  df-ss 2987  df-nul 3259  df-pw 3392  df-sn 3412  df-pr 3413  df-op 3415  df-uni 3610  df-int 3645  df-iun 3688  df-br 3794  df-opab 3848  df-mpt 3849  df-tr 3884  df-id 4056  df-iord 4129  df-on 4131  df-suc 4134  df-iom 4340  df-xp 4377  df-rel 4378  df-cnv 4379  df-co 4380  df-dm 4381  df-rn 4382  df-res 4383  df-ima 4384  df-iota 4897  df-fun 4934  df-fn 4935  df-f 4936  df-f1 4937  df-fo 4938  df-f1o 4939  df-fv 4940  df-ov 5546  df-oprab 5547  df-mpt2 5548  df-1st 5798  df-2nd 5799  df-recs 5954  df-irdg 6019  df-oadd 6069  df-omul 6070  df-er 6172  df-ec 6174  df-qs 6178  df-ni 6556  df-mi 6558  df-mpq 6597  df-enq 6599  df-nqqs 6600  df-mqqs 6602 This theorem is referenced by:  mulclnq  6628  mulcomnqg  6635  mulassnqg  6636  distrnqg  6639  mulidnq  6641  recexnq  6642  ltmnqg  6653  nqnq0m  6707
 Copyright terms: Public domain W3C validator