ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mulclnq GIF version

Theorem mulclnq 6472
Description: Closure of multiplication on positive fractions. (Contributed by NM, 29-Aug-1995.)
Assertion
Ref Expression
mulclnq ((𝐴Q𝐵Q) → (𝐴 ·Q 𝐵) ∈ Q)

Proof of Theorem mulclnq
Dummy variables 𝑥 𝑦 𝑧 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-nqqs 6444 . . 3 Q = ((N × N) / ~Q )
2 oveq1 5519 . . . 4 ([⟨𝑥, 𝑦⟩] ~Q = 𝐴 → ([⟨𝑥, 𝑦⟩] ~Q ·Q [⟨𝑧, 𝑤⟩] ~Q ) = (𝐴 ·Q [⟨𝑧, 𝑤⟩] ~Q ))
32eleq1d 2106 . . 3 ([⟨𝑥, 𝑦⟩] ~Q = 𝐴 → (([⟨𝑥, 𝑦⟩] ~Q ·Q [⟨𝑧, 𝑤⟩] ~Q ) ∈ ((N × N) / ~Q ) ↔ (𝐴 ·Q [⟨𝑧, 𝑤⟩] ~Q ) ∈ ((N × N) / ~Q )))
4 oveq2 5520 . . . 4 ([⟨𝑧, 𝑤⟩] ~Q = 𝐵 → (𝐴 ·Q [⟨𝑧, 𝑤⟩] ~Q ) = (𝐴 ·Q 𝐵))
54eleq1d 2106 . . 3 ([⟨𝑧, 𝑤⟩] ~Q = 𝐵 → ((𝐴 ·Q [⟨𝑧, 𝑤⟩] ~Q ) ∈ ((N × N) / ~Q ) ↔ (𝐴 ·Q 𝐵) ∈ ((N × N) / ~Q )))
6 mulpipqqs 6469 . . . 4 (((𝑥N𝑦N) ∧ (𝑧N𝑤N)) → ([⟨𝑥, 𝑦⟩] ~Q ·Q [⟨𝑧, 𝑤⟩] ~Q ) = [⟨(𝑥 ·N 𝑧), (𝑦 ·N 𝑤)⟩] ~Q )
7 mulclpi 6424 . . . . . . 7 ((𝑥N𝑧N) → (𝑥 ·N 𝑧) ∈ N)
8 mulclpi 6424 . . . . . . 7 ((𝑦N𝑤N) → (𝑦 ·N 𝑤) ∈ N)
97, 8anim12i 321 . . . . . 6 (((𝑥N𝑧N) ∧ (𝑦N𝑤N)) → ((𝑥 ·N 𝑧) ∈ N ∧ (𝑦 ·N 𝑤) ∈ N))
109an4s 522 . . . . 5 (((𝑥N𝑦N) ∧ (𝑧N𝑤N)) → ((𝑥 ·N 𝑧) ∈ N ∧ (𝑦 ·N 𝑤) ∈ N))
11 opelxpi 4376 . . . . 5 (((𝑥 ·N 𝑧) ∈ N ∧ (𝑦 ·N 𝑤) ∈ N) → ⟨(𝑥 ·N 𝑧), (𝑦 ·N 𝑤)⟩ ∈ (N × N))
12 enqex 6456 . . . . . 6 ~Q ∈ V
1312ecelqsi 6160 . . . . 5 (⟨(𝑥 ·N 𝑧), (𝑦 ·N 𝑤)⟩ ∈ (N × N) → [⟨(𝑥 ·N 𝑧), (𝑦 ·N 𝑤)⟩] ~Q ∈ ((N × N) / ~Q ))
1410, 11, 133syl 17 . . . 4 (((𝑥N𝑦N) ∧ (𝑧N𝑤N)) → [⟨(𝑥 ·N 𝑧), (𝑦 ·N 𝑤)⟩] ~Q ∈ ((N × N) / ~Q ))
156, 14eqeltrd 2114 . . 3 (((𝑥N𝑦N) ∧ (𝑧N𝑤N)) → ([⟨𝑥, 𝑦⟩] ~Q ·Q [⟨𝑧, 𝑤⟩] ~Q ) ∈ ((N × N) / ~Q ))
161, 3, 5, 152ecoptocl 6194 . 2 ((𝐴Q𝐵Q) → (𝐴 ·Q 𝐵) ∈ ((N × N) / ~Q ))
1716, 1syl6eleqr 2131 1 ((𝐴Q𝐵Q) → (𝐴 ·Q 𝐵) ∈ Q)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 97   = wceq 1243  wcel 1393  cop 3378   × cxp 4343  (class class class)co 5512  [cec 6104   / cqs 6105  Ncnpi 6368   ·N cmi 6370   ~Q ceq 6375  Qcnq 6376   ·Q cmq 6379
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-in1 544  ax-in2 545  ax-io 630  ax-5 1336  ax-7 1337  ax-gen 1338  ax-ie1 1382  ax-ie2 1383  ax-8 1395  ax-10 1396  ax-11 1397  ax-i12 1398  ax-bndl 1399  ax-4 1400  ax-13 1404  ax-14 1405  ax-17 1419  ax-i9 1423  ax-ial 1427  ax-i5r 1428  ax-ext 2022  ax-coll 3872  ax-sep 3875  ax-nul 3883  ax-pow 3927  ax-pr 3944  ax-un 4170  ax-setind 4262  ax-iinf 4311
This theorem depends on definitions:  df-bi 110  df-dc 743  df-3or 886  df-3an 887  df-tru 1246  df-fal 1249  df-nf 1350  df-sb 1646  df-eu 1903  df-mo 1904  df-clab 2027  df-cleq 2033  df-clel 2036  df-nfc 2167  df-ne 2206  df-ral 2311  df-rex 2312  df-reu 2313  df-rab 2315  df-v 2559  df-sbc 2765  df-csb 2853  df-dif 2920  df-un 2922  df-in 2924  df-ss 2931  df-nul 3225  df-pw 3361  df-sn 3381  df-pr 3382  df-op 3384  df-uni 3581  df-int 3616  df-iun 3659  df-br 3765  df-opab 3819  df-mpt 3820  df-tr 3855  df-id 4030  df-iord 4103  df-on 4105  df-suc 4108  df-iom 4314  df-xp 4351  df-rel 4352  df-cnv 4353  df-co 4354  df-dm 4355  df-rn 4356  df-res 4357  df-ima 4358  df-iota 4867  df-fun 4904  df-fn 4905  df-f 4906  df-f1 4907  df-fo 4908  df-f1o 4909  df-fv 4910  df-ov 5515  df-oprab 5516  df-mpt2 5517  df-1st 5767  df-2nd 5768  df-recs 5920  df-irdg 5957  df-oadd 6005  df-omul 6006  df-er 6106  df-ec 6108  df-qs 6112  df-ni 6400  df-mi 6402  df-mpq 6441  df-enq 6443  df-nqqs 6444  df-mqqs 6446
This theorem is referenced by:  halfnqq  6506  prarloclemarch  6514  prarloclemarch2  6515  ltrnqg  6516  prarloclemlt  6589  prarloclemlo  6590  prarloclemcalc  6598  addnqprllem  6623  addnqprulem  6624  addnqprl  6625  addnqpru  6626  mpvlu  6635  dmmp  6637  appdivnq  6659  prmuloclemcalc  6661  prmuloc  6662  mulnqprl  6664  mulnqpru  6665  mullocprlem  6666  mullocpr  6667  mulclpr  6668  mulnqprlemrl  6669  mulnqprlemru  6670  mulnqprlemfl  6671  mulnqprlemfu  6672  mulnqpr  6673  mulassprg  6677  distrlem1prl  6678  distrlem1pru  6679  distrlem4prl  6680  distrlem4pru  6681  distrlem5prl  6682  distrlem5pru  6683  1idprl  6686  1idpru  6687  recexprlem1ssl  6729  recexprlem1ssu  6730  recexprlemss1l  6731  recexprlemss1u  6732
  Copyright terms: Public domain W3C validator