Users' Mathboxes Mathbox for Jim Kingdon < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  peano4nninf GIF version

Theorem peano4nninf 13200
Description: The successor function on is one to one. Half of Lemma 3.4 of [PradicBrown2022], p. 5. (Contributed by Jim Kingdon, 31-Jul-2022.)
Hypothesis
Ref Expression
peano4nninf.s 𝑆 = (𝑝 ∈ ℕ ↦ (𝑖 ∈ ω ↦ if(𝑖 = ∅, 1o, (𝑝 𝑖))))
Assertion
Ref Expression
peano4nninf 𝑆:ℕ1-1→ℕ
Distinct variable groups:   𝑆,𝑖   𝑖,𝑝
Allowed substitution hint:   𝑆(𝑝)

Proof of Theorem peano4nninf
Dummy variables 𝑘 𝑥 𝑦 𝑓 𝑗 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 peano4nninf.s . . 3 𝑆 = (𝑝 ∈ ℕ ↦ (𝑖 ∈ ω ↦ if(𝑖 = ∅, 1o, (𝑝 𝑖))))
21nnsf 13199 . 2 𝑆:ℕ⟶ℕ
3 fveq1 5420 . . . . . . . . . . 11 (𝑓 = 𝑥 → (𝑓‘suc 𝑗) = (𝑥‘suc 𝑗))
4 fveq1 5420 . . . . . . . . . . 11 (𝑓 = 𝑥 → (𝑓𝑗) = (𝑥𝑗))
53, 4sseq12d 3128 . . . . . . . . . 10 (𝑓 = 𝑥 → ((𝑓‘suc 𝑗) ⊆ (𝑓𝑗) ↔ (𝑥‘suc 𝑗) ⊆ (𝑥𝑗)))
65ralbidv 2437 . . . . . . . . 9 (𝑓 = 𝑥 → (∀𝑗 ∈ ω (𝑓‘suc 𝑗) ⊆ (𝑓𝑗) ↔ ∀𝑗 ∈ ω (𝑥‘suc 𝑗) ⊆ (𝑥𝑗)))
7 df-nninf 7007 . . . . . . . . 9 = {𝑓 ∈ (2o𝑚 ω) ∣ ∀𝑗 ∈ ω (𝑓‘suc 𝑗) ⊆ (𝑓𝑗)}
86, 7elrab2 2843 . . . . . . . 8 (𝑥 ∈ ℕ ↔ (𝑥 ∈ (2o𝑚 ω) ∧ ∀𝑗 ∈ ω (𝑥‘suc 𝑗) ⊆ (𝑥𝑗)))
98simplbi 272 . . . . . . 7 (𝑥 ∈ ℕ𝑥 ∈ (2o𝑚 ω))
10 elmapfn 6565 . . . . . . 7 (𝑥 ∈ (2o𝑚 ω) → 𝑥 Fn ω)
119, 10syl 14 . . . . . 6 (𝑥 ∈ ℕ𝑥 Fn ω)
1211ad2antrr 479 . . . . 5 (((𝑥 ∈ ℕ𝑦 ∈ ℕ) ∧ (𝑆𝑥) = (𝑆𝑦)) → 𝑥 Fn ω)
13 fveq1 5420 . . . . . . . . . . 11 (𝑓 = 𝑦 → (𝑓‘suc 𝑗) = (𝑦‘suc 𝑗))
14 fveq1 5420 . . . . . . . . . . 11 (𝑓 = 𝑦 → (𝑓𝑗) = (𝑦𝑗))
1513, 14sseq12d 3128 . . . . . . . . . 10 (𝑓 = 𝑦 → ((𝑓‘suc 𝑗) ⊆ (𝑓𝑗) ↔ (𝑦‘suc 𝑗) ⊆ (𝑦𝑗)))
1615ralbidv 2437 . . . . . . . . 9 (𝑓 = 𝑦 → (∀𝑗 ∈ ω (𝑓‘suc 𝑗) ⊆ (𝑓𝑗) ↔ ∀𝑗 ∈ ω (𝑦‘suc 𝑗) ⊆ (𝑦𝑗)))
1716, 7elrab2 2843 . . . . . . . 8 (𝑦 ∈ ℕ ↔ (𝑦 ∈ (2o𝑚 ω) ∧ ∀𝑗 ∈ ω (𝑦‘suc 𝑗) ⊆ (𝑦𝑗)))
1817simplbi 272 . . . . . . 7 (𝑦 ∈ ℕ𝑦 ∈ (2o𝑚 ω))
19 elmapfn 6565 . . . . . . 7 (𝑦 ∈ (2o𝑚 ω) → 𝑦 Fn ω)
2018, 19syl 14 . . . . . 6 (𝑦 ∈ ℕ𝑦 Fn ω)
2120ad2antlr 480 . . . . 5 (((𝑥 ∈ ℕ𝑦 ∈ ℕ) ∧ (𝑆𝑥) = (𝑆𝑦)) → 𝑦 Fn ω)
22 simplr 519 . . . . . . 7 ((((𝑥 ∈ ℕ𝑦 ∈ ℕ) ∧ (𝑆𝑥) = (𝑆𝑦)) ∧ 𝑘 ∈ ω) → (𝑆𝑥) = (𝑆𝑦))
2322fveq1d 5423 . . . . . 6 ((((𝑥 ∈ ℕ𝑦 ∈ ℕ) ∧ (𝑆𝑥) = (𝑆𝑦)) ∧ 𝑘 ∈ ω) → ((𝑆𝑥)‘suc 𝑘) = ((𝑆𝑦)‘suc 𝑘))
24 fveq1 5420 . . . . . . . . . . . 12 (𝑝 = 𝑥 → (𝑝 𝑖) = (𝑥 𝑖))
2524ifeq2d 3490 . . . . . . . . . . 11 (𝑝 = 𝑥 → if(𝑖 = ∅, 1o, (𝑝 𝑖)) = if(𝑖 = ∅, 1o, (𝑥 𝑖)))
2625mpteq2dv 4019 . . . . . . . . . 10 (𝑝 = 𝑥 → (𝑖 ∈ ω ↦ if(𝑖 = ∅, 1o, (𝑝 𝑖))) = (𝑖 ∈ ω ↦ if(𝑖 = ∅, 1o, (𝑥 𝑖))))
27 omex 4507 . . . . . . . . . . 11 ω ∈ V
2827mptex 5646 . . . . . . . . . 10 (𝑖 ∈ ω ↦ if(𝑖 = ∅, 1o, (𝑥 𝑖))) ∈ V
2926, 1, 28fvmpt 5498 . . . . . . . . 9 (𝑥 ∈ ℕ → (𝑆𝑥) = (𝑖 ∈ ω ↦ if(𝑖 = ∅, 1o, (𝑥 𝑖))))
3029ad3antrrr 483 . . . . . . . 8 ((((𝑥 ∈ ℕ𝑦 ∈ ℕ) ∧ (𝑆𝑥) = (𝑆𝑦)) ∧ 𝑘 ∈ ω) → (𝑆𝑥) = (𝑖 ∈ ω ↦ if(𝑖 = ∅, 1o, (𝑥 𝑖))))
31 simpr 109 . . . . . . . . . 10 (((((𝑥 ∈ ℕ𝑦 ∈ ℕ) ∧ (𝑆𝑥) = (𝑆𝑦)) ∧ 𝑘 ∈ ω) ∧ 𝑖 = suc 𝑘) → 𝑖 = suc 𝑘)
3231eqeq1d 2148 . . . . . . . . 9 (((((𝑥 ∈ ℕ𝑦 ∈ ℕ) ∧ (𝑆𝑥) = (𝑆𝑦)) ∧ 𝑘 ∈ ω) ∧ 𝑖 = suc 𝑘) → (𝑖 = ∅ ↔ suc 𝑘 = ∅))
3331unieqd 3747 . . . . . . . . . 10 (((((𝑥 ∈ ℕ𝑦 ∈ ℕ) ∧ (𝑆𝑥) = (𝑆𝑦)) ∧ 𝑘 ∈ ω) ∧ 𝑖 = suc 𝑘) → 𝑖 = suc 𝑘)
3433fveq2d 5425 . . . . . . . . 9 (((((𝑥 ∈ ℕ𝑦 ∈ ℕ) ∧ (𝑆𝑥) = (𝑆𝑦)) ∧ 𝑘 ∈ ω) ∧ 𝑖 = suc 𝑘) → (𝑥 𝑖) = (𝑥 suc 𝑘))
3532, 34ifbieq2d 3496 . . . . . . . 8 (((((𝑥 ∈ ℕ𝑦 ∈ ℕ) ∧ (𝑆𝑥) = (𝑆𝑦)) ∧ 𝑘 ∈ ω) ∧ 𝑖 = suc 𝑘) → if(𝑖 = ∅, 1o, (𝑥 𝑖)) = if(suc 𝑘 = ∅, 1o, (𝑥 suc 𝑘)))
36 peano2 4509 . . . . . . . . 9 (𝑘 ∈ ω → suc 𝑘 ∈ ω)
3736adantl 275 . . . . . . . 8 ((((𝑥 ∈ ℕ𝑦 ∈ ℕ) ∧ (𝑆𝑥) = (𝑆𝑦)) ∧ 𝑘 ∈ ω) → suc 𝑘 ∈ ω)
38 1lt2o 6339 . . . . . . . . . 10 1o ∈ 2o
3938a1i 9 . . . . . . . . 9 ((((𝑥 ∈ ℕ𝑦 ∈ ℕ) ∧ (𝑆𝑥) = (𝑆𝑦)) ∧ 𝑘 ∈ ω) → 1o ∈ 2o)
40 nninff 13198 . . . . . . . . . . 11 (𝑥 ∈ ℕ𝑥:ω⟶2o)
4140ad3antrrr 483 . . . . . . . . . 10 ((((𝑥 ∈ ℕ𝑦 ∈ ℕ) ∧ (𝑆𝑥) = (𝑆𝑦)) ∧ 𝑘 ∈ ω) → 𝑥:ω⟶2o)
42 nnpredcl 4536 . . . . . . . . . . 11 (suc 𝑘 ∈ ω → suc 𝑘 ∈ ω)
4337, 42syl 14 . . . . . . . . . 10 ((((𝑥 ∈ ℕ𝑦 ∈ ℕ) ∧ (𝑆𝑥) = (𝑆𝑦)) ∧ 𝑘 ∈ ω) → suc 𝑘 ∈ ω)
4441, 43ffvelrnd 5556 . . . . . . . . 9 ((((𝑥 ∈ ℕ𝑦 ∈ ℕ) ∧ (𝑆𝑥) = (𝑆𝑦)) ∧ 𝑘 ∈ ω) → (𝑥 suc 𝑘) ∈ 2o)
45 nndceq0 4531 . . . . . . . . . 10 (suc 𝑘 ∈ ω → DECID suc 𝑘 = ∅)
4637, 45syl 14 . . . . . . . . 9 ((((𝑥 ∈ ℕ𝑦 ∈ ℕ) ∧ (𝑆𝑥) = (𝑆𝑦)) ∧ 𝑘 ∈ ω) → DECID suc 𝑘 = ∅)
4739, 44, 46ifcldcd 3507 . . . . . . . 8 ((((𝑥 ∈ ℕ𝑦 ∈ ℕ) ∧ (𝑆𝑥) = (𝑆𝑦)) ∧ 𝑘 ∈ ω) → if(suc 𝑘 = ∅, 1o, (𝑥 suc 𝑘)) ∈ 2o)
4830, 35, 37, 47fvmptd 5502 . . . . . . 7 ((((𝑥 ∈ ℕ𝑦 ∈ ℕ) ∧ (𝑆𝑥) = (𝑆𝑦)) ∧ 𝑘 ∈ ω) → ((𝑆𝑥)‘suc 𝑘) = if(suc 𝑘 = ∅, 1o, (𝑥 suc 𝑘)))
49 peano3 4510 . . . . . . . . . 10 (𝑘 ∈ ω → suc 𝑘 ≠ ∅)
5049adantl 275 . . . . . . . . 9 ((((𝑥 ∈ ℕ𝑦 ∈ ℕ) ∧ (𝑆𝑥) = (𝑆𝑦)) ∧ 𝑘 ∈ ω) → suc 𝑘 ≠ ∅)
5150neneqd 2329 . . . . . . . 8 ((((𝑥 ∈ ℕ𝑦 ∈ ℕ) ∧ (𝑆𝑥) = (𝑆𝑦)) ∧ 𝑘 ∈ ω) → ¬ suc 𝑘 = ∅)
5251iffalsed 3484 . . . . . . 7 ((((𝑥 ∈ ℕ𝑦 ∈ ℕ) ∧ (𝑆𝑥) = (𝑆𝑦)) ∧ 𝑘 ∈ ω) → if(suc 𝑘 = ∅, 1o, (𝑥 suc 𝑘)) = (𝑥 suc 𝑘))
53 nnord 4525 . . . . . . . . . . 11 (𝑘 ∈ ω → Ord 𝑘)
54 ordtr 4300 . . . . . . . . . . 11 (Ord 𝑘 → Tr 𝑘)
5553, 54syl 14 . . . . . . . . . 10 (𝑘 ∈ ω → Tr 𝑘)
56 unisucg 4336 . . . . . . . . . 10 (𝑘 ∈ ω → (Tr 𝑘 suc 𝑘 = 𝑘))
5755, 56mpbid 146 . . . . . . . . 9 (𝑘 ∈ ω → suc 𝑘 = 𝑘)
5857fveq2d 5425 . . . . . . . 8 (𝑘 ∈ ω → (𝑥 suc 𝑘) = (𝑥𝑘))
5958adantl 275 . . . . . . 7 ((((𝑥 ∈ ℕ𝑦 ∈ ℕ) ∧ (𝑆𝑥) = (𝑆𝑦)) ∧ 𝑘 ∈ ω) → (𝑥 suc 𝑘) = (𝑥𝑘))
6048, 52, 593eqtrd 2176 . . . . . 6 ((((𝑥 ∈ ℕ𝑦 ∈ ℕ) ∧ (𝑆𝑥) = (𝑆𝑦)) ∧ 𝑘 ∈ ω) → ((𝑆𝑥)‘suc 𝑘) = (𝑥𝑘))
61 fveq1 5420 . . . . . . . . . . . 12 (𝑝 = 𝑦 → (𝑝 𝑖) = (𝑦 𝑖))
6261ifeq2d 3490 . . . . . . . . . . 11 (𝑝 = 𝑦 → if(𝑖 = ∅, 1o, (𝑝 𝑖)) = if(𝑖 = ∅, 1o, (𝑦 𝑖)))
6362mpteq2dv 4019 . . . . . . . . . 10 (𝑝 = 𝑦 → (𝑖 ∈ ω ↦ if(𝑖 = ∅, 1o, (𝑝 𝑖))) = (𝑖 ∈ ω ↦ if(𝑖 = ∅, 1o, (𝑦 𝑖))))
6427mptex 5646 . . . . . . . . . 10 (𝑖 ∈ ω ↦ if(𝑖 = ∅, 1o, (𝑦 𝑖))) ∈ V
6563, 1, 64fvmpt 5498 . . . . . . . . 9 (𝑦 ∈ ℕ → (𝑆𝑦) = (𝑖 ∈ ω ↦ if(𝑖 = ∅, 1o, (𝑦 𝑖))))
6665ad3antlr 484 . . . . . . . 8 ((((𝑥 ∈ ℕ𝑦 ∈ ℕ) ∧ (𝑆𝑥) = (𝑆𝑦)) ∧ 𝑘 ∈ ω) → (𝑆𝑦) = (𝑖 ∈ ω ↦ if(𝑖 = ∅, 1o, (𝑦 𝑖))))
6733fveq2d 5425 . . . . . . . . 9 (((((𝑥 ∈ ℕ𝑦 ∈ ℕ) ∧ (𝑆𝑥) = (𝑆𝑦)) ∧ 𝑘 ∈ ω) ∧ 𝑖 = suc 𝑘) → (𝑦 𝑖) = (𝑦 suc 𝑘))
6832, 67ifbieq2d 3496 . . . . . . . 8 (((((𝑥 ∈ ℕ𝑦 ∈ ℕ) ∧ (𝑆𝑥) = (𝑆𝑦)) ∧ 𝑘 ∈ ω) ∧ 𝑖 = suc 𝑘) → if(𝑖 = ∅, 1o, (𝑦 𝑖)) = if(suc 𝑘 = ∅, 1o, (𝑦 suc 𝑘)))
69 nninff 13198 . . . . . . . . . . 11 (𝑦 ∈ ℕ𝑦:ω⟶2o)
7069ad3antlr 484 . . . . . . . . . 10 ((((𝑥 ∈ ℕ𝑦 ∈ ℕ) ∧ (𝑆𝑥) = (𝑆𝑦)) ∧ 𝑘 ∈ ω) → 𝑦:ω⟶2o)
7170, 43ffvelrnd 5556 . . . . . . . . 9 ((((𝑥 ∈ ℕ𝑦 ∈ ℕ) ∧ (𝑆𝑥) = (𝑆𝑦)) ∧ 𝑘 ∈ ω) → (𝑦 suc 𝑘) ∈ 2o)
7239, 71, 46ifcldcd 3507 . . . . . . . 8 ((((𝑥 ∈ ℕ𝑦 ∈ ℕ) ∧ (𝑆𝑥) = (𝑆𝑦)) ∧ 𝑘 ∈ ω) → if(suc 𝑘 = ∅, 1o, (𝑦 suc 𝑘)) ∈ 2o)
7366, 68, 37, 72fvmptd 5502 . . . . . . 7 ((((𝑥 ∈ ℕ𝑦 ∈ ℕ) ∧ (𝑆𝑥) = (𝑆𝑦)) ∧ 𝑘 ∈ ω) → ((𝑆𝑦)‘suc 𝑘) = if(suc 𝑘 = ∅, 1o, (𝑦 suc 𝑘)))
7451iffalsed 3484 . . . . . . 7 ((((𝑥 ∈ ℕ𝑦 ∈ ℕ) ∧ (𝑆𝑥) = (𝑆𝑦)) ∧ 𝑘 ∈ ω) → if(suc 𝑘 = ∅, 1o, (𝑦 suc 𝑘)) = (𝑦 suc 𝑘))
7557fveq2d 5425 . . . . . . . 8 (𝑘 ∈ ω → (𝑦 suc 𝑘) = (𝑦𝑘))
7675adantl 275 . . . . . . 7 ((((𝑥 ∈ ℕ𝑦 ∈ ℕ) ∧ (𝑆𝑥) = (𝑆𝑦)) ∧ 𝑘 ∈ ω) → (𝑦 suc 𝑘) = (𝑦𝑘))
7773, 74, 763eqtrd 2176 . . . . . 6 ((((𝑥 ∈ ℕ𝑦 ∈ ℕ) ∧ (𝑆𝑥) = (𝑆𝑦)) ∧ 𝑘 ∈ ω) → ((𝑆𝑦)‘suc 𝑘) = (𝑦𝑘))
7823, 60, 773eqtr3d 2180 . . . . 5 ((((𝑥 ∈ ℕ𝑦 ∈ ℕ) ∧ (𝑆𝑥) = (𝑆𝑦)) ∧ 𝑘 ∈ ω) → (𝑥𝑘) = (𝑦𝑘))
7912, 21, 78eqfnfvd 5521 . . . 4 (((𝑥 ∈ ℕ𝑦 ∈ ℕ) ∧ (𝑆𝑥) = (𝑆𝑦)) → 𝑥 = 𝑦)
8079ex 114 . . 3 ((𝑥 ∈ ℕ𝑦 ∈ ℕ) → ((𝑆𝑥) = (𝑆𝑦) → 𝑥 = 𝑦))
8180rgen2a 2486 . 2 𝑥 ∈ ℕ𝑦 ∈ ℕ ((𝑆𝑥) = (𝑆𝑦) → 𝑥 = 𝑦)
82 dff13 5669 . 2 (𝑆:ℕ1-1→ℕ ↔ (𝑆:ℕ⟶ℕ ∧ ∀𝑥 ∈ ℕ𝑦 ∈ ℕ ((𝑆𝑥) = (𝑆𝑦) → 𝑥 = 𝑦)))
832, 81, 82mpbir2an 926 1 𝑆:ℕ1-1→ℕ
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  DECID wdc 819   = wceq 1331  wcel 1480  wne 2308  wral 2416  wss 3071  c0 3363  ifcif 3474   cuni 3736  cmpt 3989  Tr wtr 4026  Ord word 4284  suc csuc 4287  ωcom 4504   Fn wfn 5118  wf 5119  1-1wf1 5120  cfv 5123  (class class class)co 5774  1oc1o 6306  2oc2o 6307  𝑚 cmap 6542  xnninf 7005
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-13 1491  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2121  ax-coll 4043  ax-sep 4046  ax-nul 4054  ax-pow 4098  ax-pr 4131  ax-un 4355  ax-setind 4452  ax-iinf 4502
This theorem depends on definitions:  df-bi 116  df-dc 820  df-3an 964  df-tru 1334  df-fal 1337  df-nf 1437  df-sb 1736  df-eu 2002  df-mo 2003  df-clab 2126  df-cleq 2132  df-clel 2135  df-nfc 2270  df-ne 2309  df-ral 2421  df-rex 2422  df-reu 2423  df-rab 2425  df-v 2688  df-sbc 2910  df-csb 3004  df-dif 3073  df-un 3075  df-in 3077  df-ss 3084  df-nul 3364  df-if 3475  df-pw 3512  df-sn 3533  df-pr 3534  df-op 3536  df-uni 3737  df-int 3772  df-iun 3815  df-br 3930  df-opab 3990  df-mpt 3991  df-tr 4027  df-id 4215  df-iord 4288  df-on 4290  df-suc 4293  df-iom 4505  df-xp 4545  df-rel 4546  df-cnv 4547  df-co 4548  df-dm 4549  df-rn 4550  df-res 4551  df-ima 4552  df-iota 5088  df-fun 5125  df-fn 5126  df-f 5127  df-f1 5128  df-fo 5129  df-f1o 5130  df-fv 5131  df-ov 5777  df-oprab 5778  df-mpo 5779  df-1o 6313  df-2o 6314  df-map 6544  df-nninf 7007
This theorem is referenced by:  exmidsbthrlem  13217
  Copyright terms: Public domain W3C validator