ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  prloc GIF version

Theorem prloc 7299
Description: A Dedekind cut is located. (Contributed by Jim Kingdon, 23-Oct-2019.)
Assertion
Ref Expression
prloc ((⟨𝐿, 𝑈⟩ ∈ P𝐴 <Q 𝐵) → (𝐴𝐿𝐵𝑈))

Proof of Theorem prloc
Dummy variables 𝑞 𝑟 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elinp 7282 . . . 4 (⟨𝐿, 𝑈⟩ ∈ P ↔ (((𝐿Q𝑈Q) ∧ (∃𝑞Q 𝑞𝐿 ∧ ∃𝑟Q 𝑟𝑈)) ∧ ((∀𝑞Q (𝑞𝐿 ↔ ∃𝑟Q (𝑞 <Q 𝑟𝑟𝐿)) ∧ ∀𝑟Q (𝑟𝑈 ↔ ∃𝑞Q (𝑞 <Q 𝑟𝑞𝑈))) ∧ ∀𝑞Q ¬ (𝑞𝐿𝑞𝑈) ∧ ∀𝑞Q𝑟Q (𝑞 <Q 𝑟 → (𝑞𝐿𝑟𝑈)))))
2 simpr3 989 . . . 4 ((((𝐿Q𝑈Q) ∧ (∃𝑞Q 𝑞𝐿 ∧ ∃𝑟Q 𝑟𝑈)) ∧ ((∀𝑞Q (𝑞𝐿 ↔ ∃𝑟Q (𝑞 <Q 𝑟𝑟𝐿)) ∧ ∀𝑟Q (𝑟𝑈 ↔ ∃𝑞Q (𝑞 <Q 𝑟𝑞𝑈))) ∧ ∀𝑞Q ¬ (𝑞𝐿𝑞𝑈) ∧ ∀𝑞Q𝑟Q (𝑞 <Q 𝑟 → (𝑞𝐿𝑟𝑈)))) → ∀𝑞Q𝑟Q (𝑞 <Q 𝑟 → (𝑞𝐿𝑟𝑈)))
31, 2sylbi 120 . . 3 (⟨𝐿, 𝑈⟩ ∈ P → ∀𝑞Q𝑟Q (𝑞 <Q 𝑟 → (𝑞𝐿𝑟𝑈)))
43adantr 274 . 2 ((⟨𝐿, 𝑈⟩ ∈ P𝐴 <Q 𝐵) → ∀𝑞Q𝑟Q (𝑞 <Q 𝑟 → (𝑞𝐿𝑟𝑈)))
5 simpr 109 . 2 ((⟨𝐿, 𝑈⟩ ∈ P𝐴 <Q 𝐵) → 𝐴 <Q 𝐵)
6 ltrelnq 7173 . . . . . . 7 <Q ⊆ (Q × Q)
76brel 4591 . . . . . 6 (𝐴 <Q 𝐵 → (𝐴Q𝐵Q))
87simpld 111 . . . . 5 (𝐴 <Q 𝐵𝐴Q)
98adantl 275 . . . 4 ((⟨𝐿, 𝑈⟩ ∈ P𝐴 <Q 𝐵) → 𝐴Q)
10 simpr 109 . . . . . . 7 (((⟨𝐿, 𝑈⟩ ∈ P𝐴 <Q 𝐵) ∧ 𝑞 = 𝐴) → 𝑞 = 𝐴)
1110breq1d 3939 . . . . . 6 (((⟨𝐿, 𝑈⟩ ∈ P𝐴 <Q 𝐵) ∧ 𝑞 = 𝐴) → (𝑞 <Q 𝑟𝐴 <Q 𝑟))
1210eleq1d 2208 . . . . . . 7 (((⟨𝐿, 𝑈⟩ ∈ P𝐴 <Q 𝐵) ∧ 𝑞 = 𝐴) → (𝑞𝐿𝐴𝐿))
1312orbi1d 780 . . . . . 6 (((⟨𝐿, 𝑈⟩ ∈ P𝐴 <Q 𝐵) ∧ 𝑞 = 𝐴) → ((𝑞𝐿𝑟𝑈) ↔ (𝐴𝐿𝑟𝑈)))
1411, 13imbi12d 233 . . . . 5 (((⟨𝐿, 𝑈⟩ ∈ P𝐴 <Q 𝐵) ∧ 𝑞 = 𝐴) → ((𝑞 <Q 𝑟 → (𝑞𝐿𝑟𝑈)) ↔ (𝐴 <Q 𝑟 → (𝐴𝐿𝑟𝑈))))
1514ralbidv 2437 . . . 4 (((⟨𝐿, 𝑈⟩ ∈ P𝐴 <Q 𝐵) ∧ 𝑞 = 𝐴) → (∀𝑟Q (𝑞 <Q 𝑟 → (𝑞𝐿𝑟𝑈)) ↔ ∀𝑟Q (𝐴 <Q 𝑟 → (𝐴𝐿𝑟𝑈))))
169, 15rspcdv 2792 . . 3 ((⟨𝐿, 𝑈⟩ ∈ P𝐴 <Q 𝐵) → (∀𝑞Q𝑟Q (𝑞 <Q 𝑟 → (𝑞𝐿𝑟𝑈)) → ∀𝑟Q (𝐴 <Q 𝑟 → (𝐴𝐿𝑟𝑈))))
177simprd 113 . . . . 5 (𝐴 <Q 𝐵𝐵Q)
1817adantl 275 . . . 4 ((⟨𝐿, 𝑈⟩ ∈ P𝐴 <Q 𝐵) → 𝐵Q)
19 simpr 109 . . . . . 6 (((⟨𝐿, 𝑈⟩ ∈ P𝐴 <Q 𝐵) ∧ 𝑟 = 𝐵) → 𝑟 = 𝐵)
2019breq2d 3941 . . . . 5 (((⟨𝐿, 𝑈⟩ ∈ P𝐴 <Q 𝐵) ∧ 𝑟 = 𝐵) → (𝐴 <Q 𝑟𝐴 <Q 𝐵))
2119eleq1d 2208 . . . . . 6 (((⟨𝐿, 𝑈⟩ ∈ P𝐴 <Q 𝐵) ∧ 𝑟 = 𝐵) → (𝑟𝑈𝐵𝑈))
2221orbi2d 779 . . . . 5 (((⟨𝐿, 𝑈⟩ ∈ P𝐴 <Q 𝐵) ∧ 𝑟 = 𝐵) → ((𝐴𝐿𝑟𝑈) ↔ (𝐴𝐿𝐵𝑈)))
2320, 22imbi12d 233 . . . 4 (((⟨𝐿, 𝑈⟩ ∈ P𝐴 <Q 𝐵) ∧ 𝑟 = 𝐵) → ((𝐴 <Q 𝑟 → (𝐴𝐿𝑟𝑈)) ↔ (𝐴 <Q 𝐵 → (𝐴𝐿𝐵𝑈))))
2418, 23rspcdv 2792 . . 3 ((⟨𝐿, 𝑈⟩ ∈ P𝐴 <Q 𝐵) → (∀𝑟Q (𝐴 <Q 𝑟 → (𝐴𝐿𝑟𝑈)) → (𝐴 <Q 𝐵 → (𝐴𝐿𝐵𝑈))))
2516, 24syld 45 . 2 ((⟨𝐿, 𝑈⟩ ∈ P𝐴 <Q 𝐵) → (∀𝑞Q𝑟Q (𝑞 <Q 𝑟 → (𝑞𝐿𝑟𝑈)) → (𝐴 <Q 𝐵 → (𝐴𝐿𝐵𝑈))))
264, 5, 25mp2d 47 1 ((⟨𝐿, 𝑈⟩ ∈ P𝐴 <Q 𝐵) → (𝐴𝐿𝐵𝑈))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 103  wb 104  wo 697  w3a 962   = wceq 1331  wcel 1480  wral 2416  wrex 2417  wss 3071  cop 3530   class class class wbr 3929  Qcnq 7088   <Q cltq 7093  Pcnp 7099
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-13 1491  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2121  ax-coll 4043  ax-sep 4046  ax-pow 4098  ax-pr 4131  ax-un 4355  ax-iinf 4502
This theorem depends on definitions:  df-bi 116  df-3an 964  df-tru 1334  df-nf 1437  df-sb 1736  df-eu 2002  df-mo 2003  df-clab 2126  df-cleq 2132  df-clel 2135  df-nfc 2270  df-ral 2421  df-rex 2422  df-reu 2423  df-rab 2425  df-v 2688  df-sbc 2910  df-csb 3004  df-dif 3073  df-un 3075  df-in 3077  df-ss 3084  df-pw 3512  df-sn 3533  df-pr 3534  df-op 3536  df-uni 3737  df-int 3772  df-iun 3815  df-br 3930  df-opab 3990  df-mpt 3991  df-id 4215  df-iom 4505  df-xp 4545  df-rel 4546  df-cnv 4547  df-co 4548  df-dm 4549  df-rn 4550  df-res 4551  df-ima 4552  df-iota 5088  df-fun 5125  df-fn 5126  df-f 5127  df-f1 5128  df-fo 5129  df-f1o 5130  df-fv 5131  df-qs 6435  df-ni 7112  df-nqqs 7156  df-ltnqqs 7161  df-inp 7274
This theorem is referenced by:  prarloclem3step  7304  addnqprlemfl  7367  addnqprlemfu  7368  mullocprlem  7378  mulnqprlemfl  7383  mulnqprlemfu  7384  ltsopr  7404  ltexprlemloc  7415  addcanprleml  7422  addcanprlemu  7423  recexprlemloc  7439  cauappcvgprlemladdru  7464  cauappcvgprlemladdrl  7465  caucvgprlemladdrl  7486
  Copyright terms: Public domain W3C validator