ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  caucvgprlemladdrl GIF version

Theorem caucvgprlemladdrl 7486
Description: Lemma for caucvgpr 7490. Adding 𝑆 after embedding in positive reals, or adding it as a rational. (Contributed by Jim Kingdon, 8-Oct-2020.)
Hypotheses
Ref Expression
caucvgpr.f (𝜑𝐹:NQ)
caucvgpr.cau (𝜑 → ∀𝑛N𝑘N (𝑛 <N 𝑘 → ((𝐹𝑛) <Q ((𝐹𝑘) +Q (*Q‘[⟨𝑛, 1o⟩] ~Q )) ∧ (𝐹𝑘) <Q ((𝐹𝑛) +Q (*Q‘[⟨𝑛, 1o⟩] ~Q )))))
caucvgpr.bnd (𝜑 → ∀𝑗N 𝐴 <Q (𝐹𝑗))
caucvgpr.lim 𝐿 = ⟨{𝑙Q ∣ ∃𝑗N (𝑙 +Q (*Q‘[⟨𝑗, 1o⟩] ~Q )) <Q (𝐹𝑗)}, {𝑢Q ∣ ∃𝑗N ((𝐹𝑗) +Q (*Q‘[⟨𝑗, 1o⟩] ~Q )) <Q 𝑢}⟩
caucvgprlemladd.s (𝜑𝑆Q)
Assertion
Ref Expression
caucvgprlemladdrl (𝜑 → {𝑙Q ∣ ∃𝑗N (𝑙 +Q (*Q‘[⟨𝑗, 1o⟩] ~Q )) <Q ((𝐹𝑗) +Q 𝑆)} ⊆ (1st ‘(𝐿 +P ⟨{𝑙𝑙 <Q 𝑆}, {𝑢𝑆 <Q 𝑢}⟩)))
Distinct variable groups:   𝐴,𝑗   𝑗,𝐹,𝑢,𝑙   𝑛,𝐹,𝑘   𝑘,𝐿,𝑗   𝑆,𝑙,𝑢,𝑗   𝑗,𝑘,𝑆
Allowed substitution hints:   𝜑(𝑢,𝑗,𝑘,𝑛,𝑙)   𝐴(𝑢,𝑘,𝑛,𝑙)   𝑆(𝑛)   𝐿(𝑢,𝑛,𝑙)

Proof of Theorem caucvgprlemladdrl
Dummy variables 𝑟 𝑓 𝑔 𝑎 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 opeq1 3705 . . . . . . . . 9 (𝑗 = 𝑎 → ⟨𝑗, 1o⟩ = ⟨𝑎, 1o⟩)
21eceq1d 6465 . . . . . . . 8 (𝑗 = 𝑎 → [⟨𝑗, 1o⟩] ~Q = [⟨𝑎, 1o⟩] ~Q )
32fveq2d 5425 . . . . . . 7 (𝑗 = 𝑎 → (*Q‘[⟨𝑗, 1o⟩] ~Q ) = (*Q‘[⟨𝑎, 1o⟩] ~Q ))
43oveq2d 5790 . . . . . 6 (𝑗 = 𝑎 → (𝑙 +Q (*Q‘[⟨𝑗, 1o⟩] ~Q )) = (𝑙 +Q (*Q‘[⟨𝑎, 1o⟩] ~Q )))
5 fveq2 5421 . . . . . . 7 (𝑗 = 𝑎 → (𝐹𝑗) = (𝐹𝑎))
65oveq1d 5789 . . . . . 6 (𝑗 = 𝑎 → ((𝐹𝑗) +Q 𝑆) = ((𝐹𝑎) +Q 𝑆))
74, 6breq12d 3942 . . . . 5 (𝑗 = 𝑎 → ((𝑙 +Q (*Q‘[⟨𝑗, 1o⟩] ~Q )) <Q ((𝐹𝑗) +Q 𝑆) ↔ (𝑙 +Q (*Q‘[⟨𝑎, 1o⟩] ~Q )) <Q ((𝐹𝑎) +Q 𝑆)))
87cbvrexv 2655 . . . 4 (∃𝑗N (𝑙 +Q (*Q‘[⟨𝑗, 1o⟩] ~Q )) <Q ((𝐹𝑗) +Q 𝑆) ↔ ∃𝑎N (𝑙 +Q (*Q‘[⟨𝑎, 1o⟩] ~Q )) <Q ((𝐹𝑎) +Q 𝑆))
98a1i 9 . . 3 (𝑙Q → (∃𝑗N (𝑙 +Q (*Q‘[⟨𝑗, 1o⟩] ~Q )) <Q ((𝐹𝑗) +Q 𝑆) ↔ ∃𝑎N (𝑙 +Q (*Q‘[⟨𝑎, 1o⟩] ~Q )) <Q ((𝐹𝑎) +Q 𝑆)))
109rabbiia 2671 . 2 {𝑙Q ∣ ∃𝑗N (𝑙 +Q (*Q‘[⟨𝑗, 1o⟩] ~Q )) <Q ((𝐹𝑗) +Q 𝑆)} = {𝑙Q ∣ ∃𝑎N (𝑙 +Q (*Q‘[⟨𝑎, 1o⟩] ~Q )) <Q ((𝐹𝑎) +Q 𝑆)}
11 oveq1 5781 . . . . . . 7 (𝑙 = 𝑟 → (𝑙 +Q (*Q‘[⟨𝑎, 1o⟩] ~Q )) = (𝑟 +Q (*Q‘[⟨𝑎, 1o⟩] ~Q )))
1211breq1d 3939 . . . . . 6 (𝑙 = 𝑟 → ((𝑙 +Q (*Q‘[⟨𝑎, 1o⟩] ~Q )) <Q ((𝐹𝑎) +Q 𝑆) ↔ (𝑟 +Q (*Q‘[⟨𝑎, 1o⟩] ~Q )) <Q ((𝐹𝑎) +Q 𝑆)))
1312rexbidv 2438 . . . . 5 (𝑙 = 𝑟 → (∃𝑎N (𝑙 +Q (*Q‘[⟨𝑎, 1o⟩] ~Q )) <Q ((𝐹𝑎) +Q 𝑆) ↔ ∃𝑎N (𝑟 +Q (*Q‘[⟨𝑎, 1o⟩] ~Q )) <Q ((𝐹𝑎) +Q 𝑆)))
1413elrab 2840 . . . 4 (𝑟 ∈ {𝑙Q ∣ ∃𝑎N (𝑙 +Q (*Q‘[⟨𝑎, 1o⟩] ~Q )) <Q ((𝐹𝑎) +Q 𝑆)} ↔ (𝑟Q ∧ ∃𝑎N (𝑟 +Q (*Q‘[⟨𝑎, 1o⟩] ~Q )) <Q ((𝐹𝑎) +Q 𝑆)))
15 caucvgpr.f . . . . . . . . . . . . . . 15 (𝜑𝐹:NQ)
1615ad4antr 485 . . . . . . . . . . . . . 14 (((((𝜑𝑟Q) ∧ 𝑎N) ∧ (𝑟 +Q (*Q‘[⟨𝑎, 1o⟩] ~Q )) <Q ((𝐹𝑎) +Q 𝑆)) ∧ 𝑏N) → 𝐹:NQ)
17 caucvgpr.cau . . . . . . . . . . . . . . 15 (𝜑 → ∀𝑛N𝑘N (𝑛 <N 𝑘 → ((𝐹𝑛) <Q ((𝐹𝑘) +Q (*Q‘[⟨𝑛, 1o⟩] ~Q )) ∧ (𝐹𝑘) <Q ((𝐹𝑛) +Q (*Q‘[⟨𝑛, 1o⟩] ~Q )))))
1817ad4antr 485 . . . . . . . . . . . . . 14 (((((𝜑𝑟Q) ∧ 𝑎N) ∧ (𝑟 +Q (*Q‘[⟨𝑎, 1o⟩] ~Q )) <Q ((𝐹𝑎) +Q 𝑆)) ∧ 𝑏N) → ∀𝑛N𝑘N (𝑛 <N 𝑘 → ((𝐹𝑛) <Q ((𝐹𝑘) +Q (*Q‘[⟨𝑛, 1o⟩] ~Q )) ∧ (𝐹𝑘) <Q ((𝐹𝑛) +Q (*Q‘[⟨𝑛, 1o⟩] ~Q )))))
19 simpr 109 . . . . . . . . . . . . . 14 (((((𝜑𝑟Q) ∧ 𝑎N) ∧ (𝑟 +Q (*Q‘[⟨𝑎, 1o⟩] ~Q )) <Q ((𝐹𝑎) +Q 𝑆)) ∧ 𝑏N) → 𝑏N)
20 simpllr 523 . . . . . . . . . . . . . 14 (((((𝜑𝑟Q) ∧ 𝑎N) ∧ (𝑟 +Q (*Q‘[⟨𝑎, 1o⟩] ~Q )) <Q ((𝐹𝑎) +Q 𝑆)) ∧ 𝑏N) → 𝑎N)
2116, 18, 19, 20caucvgprlemnbj 7475 . . . . . . . . . . . . 13 (((((𝜑𝑟Q) ∧ 𝑎N) ∧ (𝑟 +Q (*Q‘[⟨𝑎, 1o⟩] ~Q )) <Q ((𝐹𝑎) +Q 𝑆)) ∧ 𝑏N) → ¬ (((𝐹𝑏) +Q (*Q‘[⟨𝑏, 1o⟩] ~Q )) +Q (*Q‘[⟨𝑎, 1o⟩] ~Q )) <Q (𝐹𝑎))
2215ad3antrrr 483 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝑟Q) ∧ 𝑎N) ∧ (𝑟 +Q (*Q‘[⟨𝑎, 1o⟩] ~Q )) <Q ((𝐹𝑎) +Q 𝑆)) → 𝐹:NQ)
2322ffvelrnda 5555 . . . . . . . . . . . . . . . . 17 (((((𝜑𝑟Q) ∧ 𝑎N) ∧ (𝑟 +Q (*Q‘[⟨𝑎, 1o⟩] ~Q )) <Q ((𝐹𝑎) +Q 𝑆)) ∧ 𝑏N) → (𝐹𝑏) ∈ Q)
24 nnnq 7230 . . . . . . . . . . . . . . . . . 18 (𝑏N → [⟨𝑏, 1o⟩] ~QQ)
25 recclnq 7200 . . . . . . . . . . . . . . . . . 18 ([⟨𝑏, 1o⟩] ~QQ → (*Q‘[⟨𝑏, 1o⟩] ~Q ) ∈ Q)
2619, 24, 253syl 17 . . . . . . . . . . . . . . . . 17 (((((𝜑𝑟Q) ∧ 𝑎N) ∧ (𝑟 +Q (*Q‘[⟨𝑎, 1o⟩] ~Q )) <Q ((𝐹𝑎) +Q 𝑆)) ∧ 𝑏N) → (*Q‘[⟨𝑏, 1o⟩] ~Q ) ∈ Q)
27 addclnq 7183 . . . . . . . . . . . . . . . . 17 (((𝐹𝑏) ∈ Q ∧ (*Q‘[⟨𝑏, 1o⟩] ~Q ) ∈ Q) → ((𝐹𝑏) +Q (*Q‘[⟨𝑏, 1o⟩] ~Q )) ∈ Q)
2823, 26, 27syl2anc 408 . . . . . . . . . . . . . . . 16 (((((𝜑𝑟Q) ∧ 𝑎N) ∧ (𝑟 +Q (*Q‘[⟨𝑎, 1o⟩] ~Q )) <Q ((𝐹𝑎) +Q 𝑆)) ∧ 𝑏N) → ((𝐹𝑏) +Q (*Q‘[⟨𝑏, 1o⟩] ~Q )) ∈ Q)
29 nnnq 7230 . . . . . . . . . . . . . . . . 17 (𝑎N → [⟨𝑎, 1o⟩] ~QQ)
30 recclnq 7200 . . . . . . . . . . . . . . . . 17 ([⟨𝑎, 1o⟩] ~QQ → (*Q‘[⟨𝑎, 1o⟩] ~Q ) ∈ Q)
3120, 29, 303syl 17 . . . . . . . . . . . . . . . 16 (((((𝜑𝑟Q) ∧ 𝑎N) ∧ (𝑟 +Q (*Q‘[⟨𝑎, 1o⟩] ~Q )) <Q ((𝐹𝑎) +Q 𝑆)) ∧ 𝑏N) → (*Q‘[⟨𝑎, 1o⟩] ~Q ) ∈ Q)
32 caucvgprlemladd.s . . . . . . . . . . . . . . . . 17 (𝜑𝑆Q)
3332ad4antr 485 . . . . . . . . . . . . . . . 16 (((((𝜑𝑟Q) ∧ 𝑎N) ∧ (𝑟 +Q (*Q‘[⟨𝑎, 1o⟩] ~Q )) <Q ((𝐹𝑎) +Q 𝑆)) ∧ 𝑏N) → 𝑆Q)
34 addassnqg 7190 . . . . . . . . . . . . . . . 16 ((((𝐹𝑏) +Q (*Q‘[⟨𝑏, 1o⟩] ~Q )) ∈ Q ∧ (*Q‘[⟨𝑎, 1o⟩] ~Q ) ∈ Q𝑆Q) → ((((𝐹𝑏) +Q (*Q‘[⟨𝑏, 1o⟩] ~Q )) +Q (*Q‘[⟨𝑎, 1o⟩] ~Q )) +Q 𝑆) = (((𝐹𝑏) +Q (*Q‘[⟨𝑏, 1o⟩] ~Q )) +Q ((*Q‘[⟨𝑎, 1o⟩] ~Q ) +Q 𝑆)))
3528, 31, 33, 34syl3anc 1216 . . . . . . . . . . . . . . 15 (((((𝜑𝑟Q) ∧ 𝑎N) ∧ (𝑟 +Q (*Q‘[⟨𝑎, 1o⟩] ~Q )) <Q ((𝐹𝑎) +Q 𝑆)) ∧ 𝑏N) → ((((𝐹𝑏) +Q (*Q‘[⟨𝑏, 1o⟩] ~Q )) +Q (*Q‘[⟨𝑎, 1o⟩] ~Q )) +Q 𝑆) = (((𝐹𝑏) +Q (*Q‘[⟨𝑏, 1o⟩] ~Q )) +Q ((*Q‘[⟨𝑎, 1o⟩] ~Q ) +Q 𝑆)))
3635breq1d 3939 . . . . . . . . . . . . . 14 (((((𝜑𝑟Q) ∧ 𝑎N) ∧ (𝑟 +Q (*Q‘[⟨𝑎, 1o⟩] ~Q )) <Q ((𝐹𝑎) +Q 𝑆)) ∧ 𝑏N) → (((((𝐹𝑏) +Q (*Q‘[⟨𝑏, 1o⟩] ~Q )) +Q (*Q‘[⟨𝑎, 1o⟩] ~Q )) +Q 𝑆) <Q ((𝐹𝑎) +Q 𝑆) ↔ (((𝐹𝑏) +Q (*Q‘[⟨𝑏, 1o⟩] ~Q )) +Q ((*Q‘[⟨𝑎, 1o⟩] ~Q ) +Q 𝑆)) <Q ((𝐹𝑎) +Q 𝑆)))
37 ltanqg 7208 . . . . . . . . . . . . . . . 16 ((𝑓Q𝑔QQ) → (𝑓 <Q 𝑔 ↔ ( +Q 𝑓) <Q ( +Q 𝑔)))
3837adantl 275 . . . . . . . . . . . . . . 15 ((((((𝜑𝑟Q) ∧ 𝑎N) ∧ (𝑟 +Q (*Q‘[⟨𝑎, 1o⟩] ~Q )) <Q ((𝐹𝑎) +Q 𝑆)) ∧ 𝑏N) ∧ (𝑓Q𝑔QQ)) → (𝑓 <Q 𝑔 ↔ ( +Q 𝑓) <Q ( +Q 𝑔)))
39 addclnq 7183 . . . . . . . . . . . . . . . 16 ((((𝐹𝑏) +Q (*Q‘[⟨𝑏, 1o⟩] ~Q )) ∈ Q ∧ (*Q‘[⟨𝑎, 1o⟩] ~Q ) ∈ Q) → (((𝐹𝑏) +Q (*Q‘[⟨𝑏, 1o⟩] ~Q )) +Q (*Q‘[⟨𝑎, 1o⟩] ~Q )) ∈ Q)
4028, 31, 39syl2anc 408 . . . . . . . . . . . . . . 15 (((((𝜑𝑟Q) ∧ 𝑎N) ∧ (𝑟 +Q (*Q‘[⟨𝑎, 1o⟩] ~Q )) <Q ((𝐹𝑎) +Q 𝑆)) ∧ 𝑏N) → (((𝐹𝑏) +Q (*Q‘[⟨𝑏, 1o⟩] ~Q )) +Q (*Q‘[⟨𝑎, 1o⟩] ~Q )) ∈ Q)
4116, 20ffvelrnd 5556 . . . . . . . . . . . . . . 15 (((((𝜑𝑟Q) ∧ 𝑎N) ∧ (𝑟 +Q (*Q‘[⟨𝑎, 1o⟩] ~Q )) <Q ((𝐹𝑎) +Q 𝑆)) ∧ 𝑏N) → (𝐹𝑎) ∈ Q)
42 addcomnqg 7189 . . . . . . . . . . . . . . . 16 ((𝑓Q𝑔Q) → (𝑓 +Q 𝑔) = (𝑔 +Q 𝑓))
4342adantl 275 . . . . . . . . . . . . . . 15 ((((((𝜑𝑟Q) ∧ 𝑎N) ∧ (𝑟 +Q (*Q‘[⟨𝑎, 1o⟩] ~Q )) <Q ((𝐹𝑎) +Q 𝑆)) ∧ 𝑏N) ∧ (𝑓Q𝑔Q)) → (𝑓 +Q 𝑔) = (𝑔 +Q 𝑓))
4438, 40, 41, 33, 43caovord2d 5940 . . . . . . . . . . . . . 14 (((((𝜑𝑟Q) ∧ 𝑎N) ∧ (𝑟 +Q (*Q‘[⟨𝑎, 1o⟩] ~Q )) <Q ((𝐹𝑎) +Q 𝑆)) ∧ 𝑏N) → ((((𝐹𝑏) +Q (*Q‘[⟨𝑏, 1o⟩] ~Q )) +Q (*Q‘[⟨𝑎, 1o⟩] ~Q )) <Q (𝐹𝑎) ↔ ((((𝐹𝑏) +Q (*Q‘[⟨𝑏, 1o⟩] ~Q )) +Q (*Q‘[⟨𝑎, 1o⟩] ~Q )) +Q 𝑆) <Q ((𝐹𝑎) +Q 𝑆)))
45 addcomnqg 7189 . . . . . . . . . . . . . . . . 17 ((𝑆Q ∧ (*Q‘[⟨𝑎, 1o⟩] ~Q ) ∈ Q) → (𝑆 +Q (*Q‘[⟨𝑎, 1o⟩] ~Q )) = ((*Q‘[⟨𝑎, 1o⟩] ~Q ) +Q 𝑆))
4633, 31, 45syl2anc 408 . . . . . . . . . . . . . . . 16 (((((𝜑𝑟Q) ∧ 𝑎N) ∧ (𝑟 +Q (*Q‘[⟨𝑎, 1o⟩] ~Q )) <Q ((𝐹𝑎) +Q 𝑆)) ∧ 𝑏N) → (𝑆 +Q (*Q‘[⟨𝑎, 1o⟩] ~Q )) = ((*Q‘[⟨𝑎, 1o⟩] ~Q ) +Q 𝑆))
4746oveq2d 5790 . . . . . . . . . . . . . . 15 (((((𝜑𝑟Q) ∧ 𝑎N) ∧ (𝑟 +Q (*Q‘[⟨𝑎, 1o⟩] ~Q )) <Q ((𝐹𝑎) +Q 𝑆)) ∧ 𝑏N) → (((𝐹𝑏) +Q (*Q‘[⟨𝑏, 1o⟩] ~Q )) +Q (𝑆 +Q (*Q‘[⟨𝑎, 1o⟩] ~Q ))) = (((𝐹𝑏) +Q (*Q‘[⟨𝑏, 1o⟩] ~Q )) +Q ((*Q‘[⟨𝑎, 1o⟩] ~Q ) +Q 𝑆)))
4847breq1d 3939 . . . . . . . . . . . . . 14 (((((𝜑𝑟Q) ∧ 𝑎N) ∧ (𝑟 +Q (*Q‘[⟨𝑎, 1o⟩] ~Q )) <Q ((𝐹𝑎) +Q 𝑆)) ∧ 𝑏N) → ((((𝐹𝑏) +Q (*Q‘[⟨𝑏, 1o⟩] ~Q )) +Q (𝑆 +Q (*Q‘[⟨𝑎, 1o⟩] ~Q ))) <Q ((𝐹𝑎) +Q 𝑆) ↔ (((𝐹𝑏) +Q (*Q‘[⟨𝑏, 1o⟩] ~Q )) +Q ((*Q‘[⟨𝑎, 1o⟩] ~Q ) +Q 𝑆)) <Q ((𝐹𝑎) +Q 𝑆)))
4936, 44, 483bitr4rd 220 . . . . . . . . . . . . 13 (((((𝜑𝑟Q) ∧ 𝑎N) ∧ (𝑟 +Q (*Q‘[⟨𝑎, 1o⟩] ~Q )) <Q ((𝐹𝑎) +Q 𝑆)) ∧ 𝑏N) → ((((𝐹𝑏) +Q (*Q‘[⟨𝑏, 1o⟩] ~Q )) +Q (𝑆 +Q (*Q‘[⟨𝑎, 1o⟩] ~Q ))) <Q ((𝐹𝑎) +Q 𝑆) ↔ (((𝐹𝑏) +Q (*Q‘[⟨𝑏, 1o⟩] ~Q )) +Q (*Q‘[⟨𝑎, 1o⟩] ~Q )) <Q (𝐹𝑎)))
5021, 49mtbird 662 . . . . . . . . . . . 12 (((((𝜑𝑟Q) ∧ 𝑎N) ∧ (𝑟 +Q (*Q‘[⟨𝑎, 1o⟩] ~Q )) <Q ((𝐹𝑎) +Q 𝑆)) ∧ 𝑏N) → ¬ (((𝐹𝑏) +Q (*Q‘[⟨𝑏, 1o⟩] ~Q )) +Q (𝑆 +Q (*Q‘[⟨𝑎, 1o⟩] ~Q ))) <Q ((𝐹𝑎) +Q 𝑆))
5150nrexdv 2525 . . . . . . . . . . 11 ((((𝜑𝑟Q) ∧ 𝑎N) ∧ (𝑟 +Q (*Q‘[⟨𝑎, 1o⟩] ~Q )) <Q ((𝐹𝑎) +Q 𝑆)) → ¬ ∃𝑏N (((𝐹𝑏) +Q (*Q‘[⟨𝑏, 1o⟩] ~Q )) +Q (𝑆 +Q (*Q‘[⟨𝑎, 1o⟩] ~Q ))) <Q ((𝐹𝑎) +Q 𝑆))
5251intnand 916 . . . . . . . . . 10 ((((𝜑𝑟Q) ∧ 𝑎N) ∧ (𝑟 +Q (*Q‘[⟨𝑎, 1o⟩] ~Q )) <Q ((𝐹𝑎) +Q 𝑆)) → ¬ (((𝐹𝑎) +Q 𝑆) ∈ Q ∧ ∃𝑏N (((𝐹𝑏) +Q (*Q‘[⟨𝑏, 1o⟩] ~Q )) +Q (𝑆 +Q (*Q‘[⟨𝑎, 1o⟩] ~Q ))) <Q ((𝐹𝑎) +Q 𝑆)))
5317ad3antrrr 483 . . . . . . . . . . . . 13 ((((𝜑𝑟Q) ∧ 𝑎N) ∧ (𝑟 +Q (*Q‘[⟨𝑎, 1o⟩] ~Q )) <Q ((𝐹𝑎) +Q 𝑆)) → ∀𝑛N𝑘N (𝑛 <N 𝑘 → ((𝐹𝑛) <Q ((𝐹𝑘) +Q (*Q‘[⟨𝑛, 1o⟩] ~Q )) ∧ (𝐹𝑘) <Q ((𝐹𝑛) +Q (*Q‘[⟨𝑛, 1o⟩] ~Q )))))
54 caucvgpr.bnd . . . . . . . . . . . . . . 15 (𝜑 → ∀𝑗N 𝐴 <Q (𝐹𝑗))
55 fveq2 5421 . . . . . . . . . . . . . . . . 17 (𝑗 = 𝑏 → (𝐹𝑗) = (𝐹𝑏))
5655breq2d 3941 . . . . . . . . . . . . . . . 16 (𝑗 = 𝑏 → (𝐴 <Q (𝐹𝑗) ↔ 𝐴 <Q (𝐹𝑏)))
5756cbvralv 2654 . . . . . . . . . . . . . . 15 (∀𝑗N 𝐴 <Q (𝐹𝑗) ↔ ∀𝑏N 𝐴 <Q (𝐹𝑏))
5854, 57sylib 121 . . . . . . . . . . . . . 14 (𝜑 → ∀𝑏N 𝐴 <Q (𝐹𝑏))
5958ad3antrrr 483 . . . . . . . . . . . . 13 ((((𝜑𝑟Q) ∧ 𝑎N) ∧ (𝑟 +Q (*Q‘[⟨𝑎, 1o⟩] ~Q )) <Q ((𝐹𝑎) +Q 𝑆)) → ∀𝑏N 𝐴 <Q (𝐹𝑏))
60 caucvgpr.lim . . . . . . . . . . . . . 14 𝐿 = ⟨{𝑙Q ∣ ∃𝑗N (𝑙 +Q (*Q‘[⟨𝑗, 1o⟩] ~Q )) <Q (𝐹𝑗)}, {𝑢Q ∣ ∃𝑗N ((𝐹𝑗) +Q (*Q‘[⟨𝑗, 1o⟩] ~Q )) <Q 𝑢}⟩
61 opeq1 3705 . . . . . . . . . . . . . . . . . . . . . 22 (𝑗 = 𝑏 → ⟨𝑗, 1o⟩ = ⟨𝑏, 1o⟩)
6261eceq1d 6465 . . . . . . . . . . . . . . . . . . . . 21 (𝑗 = 𝑏 → [⟨𝑗, 1o⟩] ~Q = [⟨𝑏, 1o⟩] ~Q )
6362fveq2d 5425 . . . . . . . . . . . . . . . . . . . 20 (𝑗 = 𝑏 → (*Q‘[⟨𝑗, 1o⟩] ~Q ) = (*Q‘[⟨𝑏, 1o⟩] ~Q ))
6463oveq2d 5790 . . . . . . . . . . . . . . . . . . 19 (𝑗 = 𝑏 → (𝑙 +Q (*Q‘[⟨𝑗, 1o⟩] ~Q )) = (𝑙 +Q (*Q‘[⟨𝑏, 1o⟩] ~Q )))
6564, 55breq12d 3942 . . . . . . . . . . . . . . . . . 18 (𝑗 = 𝑏 → ((𝑙 +Q (*Q‘[⟨𝑗, 1o⟩] ~Q )) <Q (𝐹𝑗) ↔ (𝑙 +Q (*Q‘[⟨𝑏, 1o⟩] ~Q )) <Q (𝐹𝑏)))
6665cbvrexv 2655 . . . . . . . . . . . . . . . . 17 (∃𝑗N (𝑙 +Q (*Q‘[⟨𝑗, 1o⟩] ~Q )) <Q (𝐹𝑗) ↔ ∃𝑏N (𝑙 +Q (*Q‘[⟨𝑏, 1o⟩] ~Q )) <Q (𝐹𝑏))
6766a1i 9 . . . . . . . . . . . . . . . 16 (𝑙Q → (∃𝑗N (𝑙 +Q (*Q‘[⟨𝑗, 1o⟩] ~Q )) <Q (𝐹𝑗) ↔ ∃𝑏N (𝑙 +Q (*Q‘[⟨𝑏, 1o⟩] ~Q )) <Q (𝐹𝑏)))
6867rabbiia 2671 . . . . . . . . . . . . . . 15 {𝑙Q ∣ ∃𝑗N (𝑙 +Q (*Q‘[⟨𝑗, 1o⟩] ~Q )) <Q (𝐹𝑗)} = {𝑙Q ∣ ∃𝑏N (𝑙 +Q (*Q‘[⟨𝑏, 1o⟩] ~Q )) <Q (𝐹𝑏)}
6955, 63oveq12d 5792 . . . . . . . . . . . . . . . . . . 19 (𝑗 = 𝑏 → ((𝐹𝑗) +Q (*Q‘[⟨𝑗, 1o⟩] ~Q )) = ((𝐹𝑏) +Q (*Q‘[⟨𝑏, 1o⟩] ~Q )))
7069breq1d 3939 . . . . . . . . . . . . . . . . . 18 (𝑗 = 𝑏 → (((𝐹𝑗) +Q (*Q‘[⟨𝑗, 1o⟩] ~Q )) <Q 𝑢 ↔ ((𝐹𝑏) +Q (*Q‘[⟨𝑏, 1o⟩] ~Q )) <Q 𝑢))
7170cbvrexv 2655 . . . . . . . . . . . . . . . . 17 (∃𝑗N ((𝐹𝑗) +Q (*Q‘[⟨𝑗, 1o⟩] ~Q )) <Q 𝑢 ↔ ∃𝑏N ((𝐹𝑏) +Q (*Q‘[⟨𝑏, 1o⟩] ~Q )) <Q 𝑢)
7271a1i 9 . . . . . . . . . . . . . . . 16 (𝑢Q → (∃𝑗N ((𝐹𝑗) +Q (*Q‘[⟨𝑗, 1o⟩] ~Q )) <Q 𝑢 ↔ ∃𝑏N ((𝐹𝑏) +Q (*Q‘[⟨𝑏, 1o⟩] ~Q )) <Q 𝑢))
7372rabbiia 2671 . . . . . . . . . . . . . . 15 {𝑢Q ∣ ∃𝑗N ((𝐹𝑗) +Q (*Q‘[⟨𝑗, 1o⟩] ~Q )) <Q 𝑢} = {𝑢Q ∣ ∃𝑏N ((𝐹𝑏) +Q (*Q‘[⟨𝑏, 1o⟩] ~Q )) <Q 𝑢}
7468, 73opeq12i 3710 . . . . . . . . . . . . . 14 ⟨{𝑙Q ∣ ∃𝑗N (𝑙 +Q (*Q‘[⟨𝑗, 1o⟩] ~Q )) <Q (𝐹𝑗)}, {𝑢Q ∣ ∃𝑗N ((𝐹𝑗) +Q (*Q‘[⟨𝑗, 1o⟩] ~Q )) <Q 𝑢}⟩ = ⟨{𝑙Q ∣ ∃𝑏N (𝑙 +Q (*Q‘[⟨𝑏, 1o⟩] ~Q )) <Q (𝐹𝑏)}, {𝑢Q ∣ ∃𝑏N ((𝐹𝑏) +Q (*Q‘[⟨𝑏, 1o⟩] ~Q )) <Q 𝑢}⟩
7560, 74eqtri 2160 . . . . . . . . . . . . 13 𝐿 = ⟨{𝑙Q ∣ ∃𝑏N (𝑙 +Q (*Q‘[⟨𝑏, 1o⟩] ~Q )) <Q (𝐹𝑏)}, {𝑢Q ∣ ∃𝑏N ((𝐹𝑏) +Q (*Q‘[⟨𝑏, 1o⟩] ~Q )) <Q 𝑢}⟩
7632ad3antrrr 483 . . . . . . . . . . . . . 14 ((((𝜑𝑟Q) ∧ 𝑎N) ∧ (𝑟 +Q (*Q‘[⟨𝑎, 1o⟩] ~Q )) <Q ((𝐹𝑎) +Q 𝑆)) → 𝑆Q)
7729, 30syl 14 . . . . . . . . . . . . . . 15 (𝑎N → (*Q‘[⟨𝑎, 1o⟩] ~Q ) ∈ Q)
7877ad2antlr 480 . . . . . . . . . . . . . 14 ((((𝜑𝑟Q) ∧ 𝑎N) ∧ (𝑟 +Q (*Q‘[⟨𝑎, 1o⟩] ~Q )) <Q ((𝐹𝑎) +Q 𝑆)) → (*Q‘[⟨𝑎, 1o⟩] ~Q ) ∈ Q)
79 addclnq 7183 . . . . . . . . . . . . . 14 ((𝑆Q ∧ (*Q‘[⟨𝑎, 1o⟩] ~Q ) ∈ Q) → (𝑆 +Q (*Q‘[⟨𝑎, 1o⟩] ~Q )) ∈ Q)
8076, 78, 79syl2anc 408 . . . . . . . . . . . . 13 ((((𝜑𝑟Q) ∧ 𝑎N) ∧ (𝑟 +Q (*Q‘[⟨𝑎, 1o⟩] ~Q )) <Q ((𝐹𝑎) +Q 𝑆)) → (𝑆 +Q (*Q‘[⟨𝑎, 1o⟩] ~Q )) ∈ Q)
8122, 53, 59, 75, 80caucvgprlemladdfu 7485 . . . . . . . . . . . 12 ((((𝜑𝑟Q) ∧ 𝑎N) ∧ (𝑟 +Q (*Q‘[⟨𝑎, 1o⟩] ~Q )) <Q ((𝐹𝑎) +Q 𝑆)) → (2nd ‘(𝐿 +P ⟨{𝑙𝑙 <Q (𝑆 +Q (*Q‘[⟨𝑎, 1o⟩] ~Q ))}, {𝑢 ∣ (𝑆 +Q (*Q‘[⟨𝑎, 1o⟩] ~Q )) <Q 𝑢}⟩)) ⊆ {𝑢Q ∣ ∃𝑏N (((𝐹𝑏) +Q (*Q‘[⟨𝑏, 1o⟩] ~Q )) +Q (𝑆 +Q (*Q‘[⟨𝑎, 1o⟩] ~Q ))) <Q 𝑢})
8281sseld 3096 . . . . . . . . . . 11 ((((𝜑𝑟Q) ∧ 𝑎N) ∧ (𝑟 +Q (*Q‘[⟨𝑎, 1o⟩] ~Q )) <Q ((𝐹𝑎) +Q 𝑆)) → (((𝐹𝑎) +Q 𝑆) ∈ (2nd ‘(𝐿 +P ⟨{𝑙𝑙 <Q (𝑆 +Q (*Q‘[⟨𝑎, 1o⟩] ~Q ))}, {𝑢 ∣ (𝑆 +Q (*Q‘[⟨𝑎, 1o⟩] ~Q )) <Q 𝑢}⟩)) → ((𝐹𝑎) +Q 𝑆) ∈ {𝑢Q ∣ ∃𝑏N (((𝐹𝑏) +Q (*Q‘[⟨𝑏, 1o⟩] ~Q )) +Q (𝑆 +Q (*Q‘[⟨𝑎, 1o⟩] ~Q ))) <Q 𝑢}))
83 breq2 3933 . . . . . . . . . . . . 13 (𝑢 = ((𝐹𝑎) +Q 𝑆) → ((((𝐹𝑏) +Q (*Q‘[⟨𝑏, 1o⟩] ~Q )) +Q (𝑆 +Q (*Q‘[⟨𝑎, 1o⟩] ~Q ))) <Q 𝑢 ↔ (((𝐹𝑏) +Q (*Q‘[⟨𝑏, 1o⟩] ~Q )) +Q (𝑆 +Q (*Q‘[⟨𝑎, 1o⟩] ~Q ))) <Q ((𝐹𝑎) +Q 𝑆)))
8483rexbidv 2438 . . . . . . . . . . . 12 (𝑢 = ((𝐹𝑎) +Q 𝑆) → (∃𝑏N (((𝐹𝑏) +Q (*Q‘[⟨𝑏, 1o⟩] ~Q )) +Q (𝑆 +Q (*Q‘[⟨𝑎, 1o⟩] ~Q ))) <Q 𝑢 ↔ ∃𝑏N (((𝐹𝑏) +Q (*Q‘[⟨𝑏, 1o⟩] ~Q )) +Q (𝑆 +Q (*Q‘[⟨𝑎, 1o⟩] ~Q ))) <Q ((𝐹𝑎) +Q 𝑆)))
8584elrab 2840 . . . . . . . . . . 11 (((𝐹𝑎) +Q 𝑆) ∈ {𝑢Q ∣ ∃𝑏N (((𝐹𝑏) +Q (*Q‘[⟨𝑏, 1o⟩] ~Q )) +Q (𝑆 +Q (*Q‘[⟨𝑎, 1o⟩] ~Q ))) <Q 𝑢} ↔ (((𝐹𝑎) +Q 𝑆) ∈ Q ∧ ∃𝑏N (((𝐹𝑏) +Q (*Q‘[⟨𝑏, 1o⟩] ~Q )) +Q (𝑆 +Q (*Q‘[⟨𝑎, 1o⟩] ~Q ))) <Q ((𝐹𝑎) +Q 𝑆)))
8682, 85syl6ib 160 . . . . . . . . . 10 ((((𝜑𝑟Q) ∧ 𝑎N) ∧ (𝑟 +Q (*Q‘[⟨𝑎, 1o⟩] ~Q )) <Q ((𝐹𝑎) +Q 𝑆)) → (((𝐹𝑎) +Q 𝑆) ∈ (2nd ‘(𝐿 +P ⟨{𝑙𝑙 <Q (𝑆 +Q (*Q‘[⟨𝑎, 1o⟩] ~Q ))}, {𝑢 ∣ (𝑆 +Q (*Q‘[⟨𝑎, 1o⟩] ~Q )) <Q 𝑢}⟩)) → (((𝐹𝑎) +Q 𝑆) ∈ Q ∧ ∃𝑏N (((𝐹𝑏) +Q (*Q‘[⟨𝑏, 1o⟩] ~Q )) +Q (𝑆 +Q (*Q‘[⟨𝑎, 1o⟩] ~Q ))) <Q ((𝐹𝑎) +Q 𝑆))))
8752, 86mtod 652 . . . . . . . . 9 ((((𝜑𝑟Q) ∧ 𝑎N) ∧ (𝑟 +Q (*Q‘[⟨𝑎, 1o⟩] ~Q )) <Q ((𝐹𝑎) +Q 𝑆)) → ¬ ((𝐹𝑎) +Q 𝑆) ∈ (2nd ‘(𝐿 +P ⟨{𝑙𝑙 <Q (𝑆 +Q (*Q‘[⟨𝑎, 1o⟩] ~Q ))}, {𝑢 ∣ (𝑆 +Q (*Q‘[⟨𝑎, 1o⟩] ~Q )) <Q 𝑢}⟩)))
8815, 17, 54, 60caucvgprlemcl 7484 . . . . . . . . . . . 12 (𝜑𝐿P)
8988ad3antrrr 483 . . . . . . . . . . 11 ((((𝜑𝑟Q) ∧ 𝑎N) ∧ (𝑟 +Q (*Q‘[⟨𝑎, 1o⟩] ~Q )) <Q ((𝐹𝑎) +Q 𝑆)) → 𝐿P)
90 nqprlu 7355 . . . . . . . . . . . 12 ((𝑆 +Q (*Q‘[⟨𝑎, 1o⟩] ~Q )) ∈ Q → ⟨{𝑙𝑙 <Q (𝑆 +Q (*Q‘[⟨𝑎, 1o⟩] ~Q ))}, {𝑢 ∣ (𝑆 +Q (*Q‘[⟨𝑎, 1o⟩] ~Q )) <Q 𝑢}⟩ ∈ P)
9180, 90syl 14 . . . . . . . . . . 11 ((((𝜑𝑟Q) ∧ 𝑎N) ∧ (𝑟 +Q (*Q‘[⟨𝑎, 1o⟩] ~Q )) <Q ((𝐹𝑎) +Q 𝑆)) → ⟨{𝑙𝑙 <Q (𝑆 +Q (*Q‘[⟨𝑎, 1o⟩] ~Q ))}, {𝑢 ∣ (𝑆 +Q (*Q‘[⟨𝑎, 1o⟩] ~Q )) <Q 𝑢}⟩ ∈ P)
92 addclpr 7345 . . . . . . . . . . 11 ((𝐿P ∧ ⟨{𝑙𝑙 <Q (𝑆 +Q (*Q‘[⟨𝑎, 1o⟩] ~Q ))}, {𝑢 ∣ (𝑆 +Q (*Q‘[⟨𝑎, 1o⟩] ~Q )) <Q 𝑢}⟩ ∈ P) → (𝐿 +P ⟨{𝑙𝑙 <Q (𝑆 +Q (*Q‘[⟨𝑎, 1o⟩] ~Q ))}, {𝑢 ∣ (𝑆 +Q (*Q‘[⟨𝑎, 1o⟩] ~Q )) <Q 𝑢}⟩) ∈ P)
9389, 91, 92syl2anc 408 . . . . . . . . . 10 ((((𝜑𝑟Q) ∧ 𝑎N) ∧ (𝑟 +Q (*Q‘[⟨𝑎, 1o⟩] ~Q )) <Q ((𝐹𝑎) +Q 𝑆)) → (𝐿 +P ⟨{𝑙𝑙 <Q (𝑆 +Q (*Q‘[⟨𝑎, 1o⟩] ~Q ))}, {𝑢 ∣ (𝑆 +Q (*Q‘[⟨𝑎, 1o⟩] ~Q )) <Q 𝑢}⟩) ∈ P)
94 prop 7283 . . . . . . . . . . 11 ((𝐿 +P ⟨{𝑙𝑙 <Q (𝑆 +Q (*Q‘[⟨𝑎, 1o⟩] ~Q ))}, {𝑢 ∣ (𝑆 +Q (*Q‘[⟨𝑎, 1o⟩] ~Q )) <Q 𝑢}⟩) ∈ P → ⟨(1st ‘(𝐿 +P ⟨{𝑙𝑙 <Q (𝑆 +Q (*Q‘[⟨𝑎, 1o⟩] ~Q ))}, {𝑢 ∣ (𝑆 +Q (*Q‘[⟨𝑎, 1o⟩] ~Q )) <Q 𝑢}⟩)), (2nd ‘(𝐿 +P ⟨{𝑙𝑙 <Q (𝑆 +Q (*Q‘[⟨𝑎, 1o⟩] ~Q ))}, {𝑢 ∣ (𝑆 +Q (*Q‘[⟨𝑎, 1o⟩] ~Q )) <Q 𝑢}⟩))⟩ ∈ P)
95 prloc 7299 . . . . . . . . . . 11 ((⟨(1st ‘(𝐿 +P ⟨{𝑙𝑙 <Q (𝑆 +Q (*Q‘[⟨𝑎, 1o⟩] ~Q ))}, {𝑢 ∣ (𝑆 +Q (*Q‘[⟨𝑎, 1o⟩] ~Q )) <Q 𝑢}⟩)), (2nd ‘(𝐿 +P ⟨{𝑙𝑙 <Q (𝑆 +Q (*Q‘[⟨𝑎, 1o⟩] ~Q ))}, {𝑢 ∣ (𝑆 +Q (*Q‘[⟨𝑎, 1o⟩] ~Q )) <Q 𝑢}⟩))⟩ ∈ P ∧ (𝑟 +Q (*Q‘[⟨𝑎, 1o⟩] ~Q )) <Q ((𝐹𝑎) +Q 𝑆)) → ((𝑟 +Q (*Q‘[⟨𝑎, 1o⟩] ~Q )) ∈ (1st ‘(𝐿 +P ⟨{𝑙𝑙 <Q (𝑆 +Q (*Q‘[⟨𝑎, 1o⟩] ~Q ))}, {𝑢 ∣ (𝑆 +Q (*Q‘[⟨𝑎, 1o⟩] ~Q )) <Q 𝑢}⟩)) ∨ ((𝐹𝑎) +Q 𝑆) ∈ (2nd ‘(𝐿 +P ⟨{𝑙𝑙 <Q (𝑆 +Q (*Q‘[⟨𝑎, 1o⟩] ~Q ))}, {𝑢 ∣ (𝑆 +Q (*Q‘[⟨𝑎, 1o⟩] ~Q )) <Q 𝑢}⟩))))
9694, 95sylan 281 . . . . . . . . . 10 (((𝐿 +P ⟨{𝑙𝑙 <Q (𝑆 +Q (*Q‘[⟨𝑎, 1o⟩] ~Q ))}, {𝑢 ∣ (𝑆 +Q (*Q‘[⟨𝑎, 1o⟩] ~Q )) <Q 𝑢}⟩) ∈ P ∧ (𝑟 +Q (*Q‘[⟨𝑎, 1o⟩] ~Q )) <Q ((𝐹𝑎) +Q 𝑆)) → ((𝑟 +Q (*Q‘[⟨𝑎, 1o⟩] ~Q )) ∈ (1st ‘(𝐿 +P ⟨{𝑙𝑙 <Q (𝑆 +Q (*Q‘[⟨𝑎, 1o⟩] ~Q ))}, {𝑢 ∣ (𝑆 +Q (*Q‘[⟨𝑎, 1o⟩] ~Q )) <Q 𝑢}⟩)) ∨ ((𝐹𝑎) +Q 𝑆) ∈ (2nd ‘(𝐿 +P ⟨{𝑙𝑙 <Q (𝑆 +Q (*Q‘[⟨𝑎, 1o⟩] ~Q ))}, {𝑢 ∣ (𝑆 +Q (*Q‘[⟨𝑎, 1o⟩] ~Q )) <Q 𝑢}⟩))))
9793, 96sylancom 416 . . . . . . . . 9 ((((𝜑𝑟Q) ∧ 𝑎N) ∧ (𝑟 +Q (*Q‘[⟨𝑎, 1o⟩] ~Q )) <Q ((𝐹𝑎) +Q 𝑆)) → ((𝑟 +Q (*Q‘[⟨𝑎, 1o⟩] ~Q )) ∈ (1st ‘(𝐿 +P ⟨{𝑙𝑙 <Q (𝑆 +Q (*Q‘[⟨𝑎, 1o⟩] ~Q ))}, {𝑢 ∣ (𝑆 +Q (*Q‘[⟨𝑎, 1o⟩] ~Q )) <Q 𝑢}⟩)) ∨ ((𝐹𝑎) +Q 𝑆) ∈ (2nd ‘(𝐿 +P ⟨{𝑙𝑙 <Q (𝑆 +Q (*Q‘[⟨𝑎, 1o⟩] ~Q ))}, {𝑢 ∣ (𝑆 +Q (*Q‘[⟨𝑎, 1o⟩] ~Q )) <Q 𝑢}⟩))))
9887, 97ecased 1327 . . . . . . . 8 ((((𝜑𝑟Q) ∧ 𝑎N) ∧ (𝑟 +Q (*Q‘[⟨𝑎, 1o⟩] ~Q )) <Q ((𝐹𝑎) +Q 𝑆)) → (𝑟 +Q (*Q‘[⟨𝑎, 1o⟩] ~Q )) ∈ (1st ‘(𝐿 +P ⟨{𝑙𝑙 <Q (𝑆 +Q (*Q‘[⟨𝑎, 1o⟩] ~Q ))}, {𝑢 ∣ (𝑆 +Q (*Q‘[⟨𝑎, 1o⟩] ~Q )) <Q 𝑢}⟩)))
99 simpllr 523 . . . . . . . . 9 ((((𝜑𝑟Q) ∧ 𝑎N) ∧ (𝑟 +Q (*Q‘[⟨𝑎, 1o⟩] ~Q )) <Q ((𝐹𝑎) +Q 𝑆)) → 𝑟Q)
10089, 76, 99, 78caucvgprlemcanl 7452 . . . . . . . 8 ((((𝜑𝑟Q) ∧ 𝑎N) ∧ (𝑟 +Q (*Q‘[⟨𝑎, 1o⟩] ~Q )) <Q ((𝐹𝑎) +Q 𝑆)) → ((𝑟 +Q (*Q‘[⟨𝑎, 1o⟩] ~Q )) ∈ (1st ‘(𝐿 +P ⟨{𝑙𝑙 <Q (𝑆 +Q (*Q‘[⟨𝑎, 1o⟩] ~Q ))}, {𝑢 ∣ (𝑆 +Q (*Q‘[⟨𝑎, 1o⟩] ~Q )) <Q 𝑢}⟩)) ↔ 𝑟 ∈ (1st ‘(𝐿 +P ⟨{𝑙𝑙 <Q 𝑆}, {𝑢𝑆 <Q 𝑢}⟩))))
10198, 100mpbid 146 . . . . . . 7 ((((𝜑𝑟Q) ∧ 𝑎N) ∧ (𝑟 +Q (*Q‘[⟨𝑎, 1o⟩] ~Q )) <Q ((𝐹𝑎) +Q 𝑆)) → 𝑟 ∈ (1st ‘(𝐿 +P ⟨{𝑙𝑙 <Q 𝑆}, {𝑢𝑆 <Q 𝑢}⟩)))
102101ex 114 . . . . . 6 (((𝜑𝑟Q) ∧ 𝑎N) → ((𝑟 +Q (*Q‘[⟨𝑎, 1o⟩] ~Q )) <Q ((𝐹𝑎) +Q 𝑆) → 𝑟 ∈ (1st ‘(𝐿 +P ⟨{𝑙𝑙 <Q 𝑆}, {𝑢𝑆 <Q 𝑢}⟩))))
103102rexlimdva 2549 . . . . 5 ((𝜑𝑟Q) → (∃𝑎N (𝑟 +Q (*Q‘[⟨𝑎, 1o⟩] ~Q )) <Q ((𝐹𝑎) +Q 𝑆) → 𝑟 ∈ (1st ‘(𝐿 +P ⟨{𝑙𝑙 <Q 𝑆}, {𝑢𝑆 <Q 𝑢}⟩))))
104103expimpd 360 . . . 4 (𝜑 → ((𝑟Q ∧ ∃𝑎N (𝑟 +Q (*Q‘[⟨𝑎, 1o⟩] ~Q )) <Q ((𝐹𝑎) +Q 𝑆)) → 𝑟 ∈ (1st ‘(𝐿 +P ⟨{𝑙𝑙 <Q 𝑆}, {𝑢𝑆 <Q 𝑢}⟩))))
10514, 104syl5bi 151 . . 3 (𝜑 → (𝑟 ∈ {𝑙Q ∣ ∃𝑎N (𝑙 +Q (*Q‘[⟨𝑎, 1o⟩] ~Q )) <Q ((𝐹𝑎) +Q 𝑆)} → 𝑟 ∈ (1st ‘(𝐿 +P ⟨{𝑙𝑙 <Q 𝑆}, {𝑢𝑆 <Q 𝑢}⟩))))
106105ssrdv 3103 . 2 (𝜑 → {𝑙Q ∣ ∃𝑎N (𝑙 +Q (*Q‘[⟨𝑎, 1o⟩] ~Q )) <Q ((𝐹𝑎) +Q 𝑆)} ⊆ (1st ‘(𝐿 +P ⟨{𝑙𝑙 <Q 𝑆}, {𝑢𝑆 <Q 𝑢}⟩)))
10710, 106eqsstrid 3143 1 (𝜑 → {𝑙Q ∣ ∃𝑗N (𝑙 +Q (*Q‘[⟨𝑗, 1o⟩] ~Q )) <Q ((𝐹𝑗) +Q 𝑆)} ⊆ (1st ‘(𝐿 +P ⟨{𝑙𝑙 <Q 𝑆}, {𝑢𝑆 <Q 𝑢}⟩)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wb 104  wo 697  w3a 962   = wceq 1331  wcel 1480  {cab 2125  wral 2416  wrex 2417  {crab 2420  wss 3071  cop 3530   class class class wbr 3929  wf 5119  cfv 5123  (class class class)co 5774  1st c1st 6036  2nd c2nd 6037  1oc1o 6306  [cec 6427  Ncnpi 7080   <N clti 7083   ~Q ceq 7087  Qcnq 7088   +Q cplq 7090  *Qcrq 7092   <Q cltq 7093  Pcnp 7099   +P cpp 7101
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-13 1491  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2121  ax-coll 4043  ax-sep 4046  ax-nul 4054  ax-pow 4098  ax-pr 4131  ax-un 4355  ax-setind 4452  ax-iinf 4502
This theorem depends on definitions:  df-bi 116  df-dc 820  df-3or 963  df-3an 964  df-tru 1334  df-fal 1337  df-nf 1437  df-sb 1736  df-eu 2002  df-mo 2003  df-clab 2126  df-cleq 2132  df-clel 2135  df-nfc 2270  df-ne 2309  df-ral 2421  df-rex 2422  df-reu 2423  df-rab 2425  df-v 2688  df-sbc 2910  df-csb 3004  df-dif 3073  df-un 3075  df-in 3077  df-ss 3084  df-nul 3364  df-pw 3512  df-sn 3533  df-pr 3534  df-op 3536  df-uni 3737  df-int 3772  df-iun 3815  df-br 3930  df-opab 3990  df-mpt 3991  df-tr 4027  df-eprel 4211  df-id 4215  df-po 4218  df-iso 4219  df-iord 4288  df-on 4290  df-suc 4293  df-iom 4505  df-xp 4545  df-rel 4546  df-cnv 4547  df-co 4548  df-dm 4549  df-rn 4550  df-res 4551  df-ima 4552  df-iota 5088  df-fun 5125  df-fn 5126  df-f 5127  df-f1 5128  df-fo 5129  df-f1o 5130  df-fv 5131  df-ov 5777  df-oprab 5778  df-mpo 5779  df-1st 6038  df-2nd 6039  df-recs 6202  df-irdg 6267  df-1o 6313  df-2o 6314  df-oadd 6317  df-omul 6318  df-er 6429  df-ec 6431  df-qs 6435  df-ni 7112  df-pli 7113  df-mi 7114  df-lti 7115  df-plpq 7152  df-mpq 7153  df-enq 7155  df-nqqs 7156  df-plqqs 7157  df-mqqs 7158  df-1nqqs 7159  df-rq 7160  df-ltnqqs 7161  df-enq0 7232  df-nq0 7233  df-0nq0 7234  df-plq0 7235  df-mq0 7236  df-inp 7274  df-iplp 7276  df-iltp 7278
This theorem is referenced by:  caucvgprlem1  7487
  Copyright terms: Public domain W3C validator