ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sqrt2irrap GIF version

Theorem sqrt2irrap 12324
Description: The square root of 2 is irrational. That is, for any rational number, (√‘2) is apart from it. In the absence of excluded middle, we can distinguish between this and "the square root of 2 is not rational" which is sqrt2irr 12306. (Contributed by Jim Kingdon, 2-Oct-2021.)
Assertion
Ref Expression
sqrt2irrap (𝑄 ∈ ℚ → (√‘2) # 𝑄)

Proof of Theorem sqrt2irrap
Dummy variables 𝑎 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elq 9693 . . 3 (𝑄 ∈ ℚ ↔ ∃𝑎 ∈ ℤ ∃𝑏 ∈ ℕ 𝑄 = (𝑎 / 𝑏))
21biimpi 120 . 2 (𝑄 ∈ ℚ → ∃𝑎 ∈ ℤ ∃𝑏 ∈ ℕ 𝑄 = (𝑎 / 𝑏))
3 simplrl 535 . . . . . . . . 9 (((𝑄 ∈ ℚ ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℕ)) ∧ 𝑄 = (𝑎 / 𝑏)) → 𝑎 ∈ ℤ)
43adantr 276 . . . . . . . 8 ((((𝑄 ∈ ℚ ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℕ)) ∧ 𝑄 = (𝑎 / 𝑏)) ∧ 𝑎 ≤ 0) → 𝑎 ∈ ℤ)
5 simplrr 536 . . . . . . . . 9 (((𝑄 ∈ ℚ ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℕ)) ∧ 𝑄 = (𝑎 / 𝑏)) → 𝑏 ∈ ℕ)
65adantr 276 . . . . . . . 8 ((((𝑄 ∈ ℚ ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℕ)) ∧ 𝑄 = (𝑎 / 𝑏)) ∧ 𝑎 ≤ 0) → 𝑏 ∈ ℕ)
7 znq 9695 . . . . . . . . 9 ((𝑎 ∈ ℤ ∧ 𝑏 ∈ ℕ) → (𝑎 / 𝑏) ∈ ℚ)
8 qre 9696 . . . . . . . . 9 ((𝑎 / 𝑏) ∈ ℚ → (𝑎 / 𝑏) ∈ ℝ)
97, 8syl 14 . . . . . . . 8 ((𝑎 ∈ ℤ ∧ 𝑏 ∈ ℕ) → (𝑎 / 𝑏) ∈ ℝ)
104, 6, 9syl2anc 411 . . . . . . 7 ((((𝑄 ∈ ℚ ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℕ)) ∧ 𝑄 = (𝑎 / 𝑏)) ∧ 𝑎 ≤ 0) → (𝑎 / 𝑏) ∈ ℝ)
11 sqrt2re 12307 . . . . . . . 8 (√‘2) ∈ ℝ
1211a1i 9 . . . . . . 7 ((((𝑄 ∈ ℚ ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℕ)) ∧ 𝑄 = (𝑎 / 𝑏)) ∧ 𝑎 ≤ 0) → (√‘2) ∈ ℝ)
13 0red 8025 . . . . . . . 8 ((((𝑄 ∈ ℚ ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℕ)) ∧ 𝑄 = (𝑎 / 𝑏)) ∧ 𝑎 ≤ 0) → 0 ∈ ℝ)
144zcnd 9446 . . . . . . . . . 10 ((((𝑄 ∈ ℚ ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℕ)) ∧ 𝑄 = (𝑎 / 𝑏)) ∧ 𝑎 ≤ 0) → 𝑎 ∈ ℂ)
156nncnd 9001 . . . . . . . . . 10 ((((𝑄 ∈ ℚ ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℕ)) ∧ 𝑄 = (𝑎 / 𝑏)) ∧ 𝑎 ≤ 0) → 𝑏 ∈ ℂ)
166nnap0d 9033 . . . . . . . . . 10 ((((𝑄 ∈ ℚ ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℕ)) ∧ 𝑄 = (𝑎 / 𝑏)) ∧ 𝑎 ≤ 0) → 𝑏 # 0)
1714, 15, 16divrecapd 8817 . . . . . . . . 9 ((((𝑄 ∈ ℚ ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℕ)) ∧ 𝑄 = (𝑎 / 𝑏)) ∧ 𝑎 ≤ 0) → (𝑎 / 𝑏) = (𝑎 · (1 / 𝑏)))
184zred 9445 . . . . . . . . . 10 ((((𝑄 ∈ ℚ ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℕ)) ∧ 𝑄 = (𝑎 / 𝑏)) ∧ 𝑎 ≤ 0) → 𝑎 ∈ ℝ)
196nnrecred 9034 . . . . . . . . . 10 ((((𝑄 ∈ ℚ ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℕ)) ∧ 𝑄 = (𝑎 / 𝑏)) ∧ 𝑎 ≤ 0) → (1 / 𝑏) ∈ ℝ)
20 simpr 110 . . . . . . . . . 10 ((((𝑄 ∈ ℚ ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℕ)) ∧ 𝑄 = (𝑎 / 𝑏)) ∧ 𝑎 ≤ 0) → 𝑎 ≤ 0)
21 1red 8039 . . . . . . . . . . 11 ((((𝑄 ∈ ℚ ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℕ)) ∧ 𝑄 = (𝑎 / 𝑏)) ∧ 𝑎 ≤ 0) → 1 ∈ ℝ)
226nnrpd 9766 . . . . . . . . . . 11 ((((𝑄 ∈ ℚ ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℕ)) ∧ 𝑄 = (𝑎 / 𝑏)) ∧ 𝑎 ≤ 0) → 𝑏 ∈ ℝ+)
23 0le1 8505 . . . . . . . . . . . 12 0 ≤ 1
2423a1i 9 . . . . . . . . . . 11 ((((𝑄 ∈ ℚ ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℕ)) ∧ 𝑄 = (𝑎 / 𝑏)) ∧ 𝑎 ≤ 0) → 0 ≤ 1)
2521, 22, 24divge0d 9809 . . . . . . . . . 10 ((((𝑄 ∈ ℚ ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℕ)) ∧ 𝑄 = (𝑎 / 𝑏)) ∧ 𝑎 ≤ 0) → 0 ≤ (1 / 𝑏))
26 mulle0r 8968 . . . . . . . . . 10 (((𝑎 ∈ ℝ ∧ (1 / 𝑏) ∈ ℝ) ∧ (𝑎 ≤ 0 ∧ 0 ≤ (1 / 𝑏))) → (𝑎 · (1 / 𝑏)) ≤ 0)
2718, 19, 20, 25, 26syl22anc 1250 . . . . . . . . 9 ((((𝑄 ∈ ℚ ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℕ)) ∧ 𝑄 = (𝑎 / 𝑏)) ∧ 𝑎 ≤ 0) → (𝑎 · (1 / 𝑏)) ≤ 0)
2817, 27eqbrtrd 4055 . . . . . . . 8 ((((𝑄 ∈ ℚ ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℕ)) ∧ 𝑄 = (𝑎 / 𝑏)) ∧ 𝑎 ≤ 0) → (𝑎 / 𝑏) ≤ 0)
29 2re 9057 . . . . . . . . . 10 2 ∈ ℝ
30 2pos 9078 . . . . . . . . . 10 0 < 2
3129, 30sqrtgt0ii 11281 . . . . . . . . 9 0 < (√‘2)
3231a1i 9 . . . . . . . 8 ((((𝑄 ∈ ℚ ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℕ)) ∧ 𝑄 = (𝑎 / 𝑏)) ∧ 𝑎 ≤ 0) → 0 < (√‘2))
3310, 13, 12, 28, 32lelttrd 8149 . . . . . . 7 ((((𝑄 ∈ ℚ ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℕ)) ∧ 𝑄 = (𝑎 / 𝑏)) ∧ 𝑎 ≤ 0) → (𝑎 / 𝑏) < (√‘2))
3410, 12, 33gtapd 8661 . . . . . 6 ((((𝑄 ∈ ℚ ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℕ)) ∧ 𝑄 = (𝑎 / 𝑏)) ∧ 𝑎 ≤ 0) → (√‘2) # (𝑎 / 𝑏))
353adantr 276 . . . . . . . 8 ((((𝑄 ∈ ℚ ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℕ)) ∧ 𝑄 = (𝑎 / 𝑏)) ∧ 0 < 𝑎) → 𝑎 ∈ ℤ)
36 simpr 110 . . . . . . . 8 ((((𝑄 ∈ ℚ ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℕ)) ∧ 𝑄 = (𝑎 / 𝑏)) ∧ 0 < 𝑎) → 0 < 𝑎)
37 elnnz 9333 . . . . . . . 8 (𝑎 ∈ ℕ ↔ (𝑎 ∈ ℤ ∧ 0 < 𝑎))
3835, 36, 37sylanbrc 417 . . . . . . 7 ((((𝑄 ∈ ℚ ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℕ)) ∧ 𝑄 = (𝑎 / 𝑏)) ∧ 0 < 𝑎) → 𝑎 ∈ ℕ)
395adantr 276 . . . . . . 7 ((((𝑄 ∈ ℚ ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℕ)) ∧ 𝑄 = (𝑎 / 𝑏)) ∧ 0 < 𝑎) → 𝑏 ∈ ℕ)
40 sqrt2irraplemnn 12323 . . . . . . 7 ((𝑎 ∈ ℕ ∧ 𝑏 ∈ ℕ) → (√‘2) # (𝑎 / 𝑏))
4138, 39, 40syl2anc 411 . . . . . 6 ((((𝑄 ∈ ℚ ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℕ)) ∧ 𝑄 = (𝑎 / 𝑏)) ∧ 0 < 𝑎) → (√‘2) # (𝑎 / 𝑏))
42 0z 9334 . . . . . . . . 9 0 ∈ ℤ
43 zlelttric 9368 . . . . . . . . 9 ((𝑎 ∈ ℤ ∧ 0 ∈ ℤ) → (𝑎 ≤ 0 ∨ 0 < 𝑎))
4442, 43mpan2 425 . . . . . . . 8 (𝑎 ∈ ℤ → (𝑎 ≤ 0 ∨ 0 < 𝑎))
4544ad2antrl 490 . . . . . . 7 ((𝑄 ∈ ℚ ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℕ)) → (𝑎 ≤ 0 ∨ 0 < 𝑎))
4645adantr 276 . . . . . 6 (((𝑄 ∈ ℚ ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℕ)) ∧ 𝑄 = (𝑎 / 𝑏)) → (𝑎 ≤ 0 ∨ 0 < 𝑎))
4734, 41, 46mpjaodan 799 . . . . 5 (((𝑄 ∈ ℚ ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℕ)) ∧ 𝑄 = (𝑎 / 𝑏)) → (√‘2) # (𝑎 / 𝑏))
48 simpr 110 . . . . 5 (((𝑄 ∈ ℚ ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℕ)) ∧ 𝑄 = (𝑎 / 𝑏)) → 𝑄 = (𝑎 / 𝑏))
4947, 48breqtrrd 4061 . . . 4 (((𝑄 ∈ ℚ ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℕ)) ∧ 𝑄 = (𝑎 / 𝑏)) → (√‘2) # 𝑄)
5049ex 115 . . 3 ((𝑄 ∈ ℚ ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℕ)) → (𝑄 = (𝑎 / 𝑏) → (√‘2) # 𝑄))
5150rexlimdvva 2622 . 2 (𝑄 ∈ ℚ → (∃𝑎 ∈ ℤ ∃𝑏 ∈ ℕ 𝑄 = (𝑎 / 𝑏) → (√‘2) # 𝑄))
522, 51mpd 13 1 (𝑄 ∈ ℚ → (√‘2) # 𝑄)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wo 709   = wceq 1364  wcel 2167  wrex 2476   class class class wbr 4033  cfv 5258  (class class class)co 5922  cr 7876  0cc0 7877  1c1 7878   · cmul 7882   < clt 8059  cle 8060   # cap 8605   / cdiv 8696  cn 8987  2c2 9038  cz 9323  cq 9690  csqrt 11146
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4148  ax-sep 4151  ax-nul 4159  ax-pow 4207  ax-pr 4242  ax-un 4468  ax-setind 4573  ax-iinf 4624  ax-cnex 7968  ax-resscn 7969  ax-1cn 7970  ax-1re 7971  ax-icn 7972  ax-addcl 7973  ax-addrcl 7974  ax-mulcl 7975  ax-mulrcl 7976  ax-addcom 7977  ax-mulcom 7978  ax-addass 7979  ax-mulass 7980  ax-distr 7981  ax-i2m1 7982  ax-0lt1 7983  ax-1rid 7984  ax-0id 7985  ax-rnegex 7986  ax-precex 7987  ax-cnre 7988  ax-pre-ltirr 7989  ax-pre-ltwlin 7990  ax-pre-lttrn 7991  ax-pre-apti 7992  ax-pre-ltadd 7993  ax-pre-mulgt0 7994  ax-pre-mulext 7995  ax-arch 7996  ax-caucvg 7997
This theorem depends on definitions:  df-bi 117  df-stab 832  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-xor 1387  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rmo 2483  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3451  df-if 3562  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-uni 3840  df-int 3875  df-iun 3918  df-br 4034  df-opab 4095  df-mpt 4096  df-tr 4132  df-id 4328  df-po 4331  df-iso 4332  df-iord 4401  df-on 4403  df-ilim 4404  df-suc 4406  df-iom 4627  df-xp 4669  df-rel 4670  df-cnv 4671  df-co 4672  df-dm 4673  df-rn 4674  df-res 4675  df-ima 4676  df-iota 5219  df-fun 5260  df-fn 5261  df-f 5262  df-f1 5263  df-fo 5264  df-f1o 5265  df-fv 5266  df-riota 5877  df-ov 5925  df-oprab 5926  df-mpo 5927  df-1st 6198  df-2nd 6199  df-recs 6363  df-frec 6449  df-1o 6474  df-2o 6475  df-er 6592  df-en 6800  df-sup 7048  df-pnf 8061  df-mnf 8062  df-xr 8063  df-ltxr 8064  df-le 8065  df-sub 8197  df-neg 8198  df-reap 8599  df-ap 8606  df-div 8697  df-inn 8988  df-2 9046  df-3 9047  df-4 9048  df-n0 9247  df-z 9324  df-uz 9599  df-q 9691  df-rp 9726  df-fz 10081  df-fzo 10215  df-fl 10345  df-mod 10400  df-seqfrec 10525  df-exp 10616  df-cj 10992  df-re 10993  df-im 10994  df-rsqrt 11148  df-abs 11149  df-dvds 11937  df-gcd 12086  df-prm 12252
This theorem is referenced by:  2irrexpqap  15186
  Copyright terms: Public domain W3C validator