Intuitionistic Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >  ssimaex GIF version

Theorem ssimaex 5261
 Description: The existence of a subimage. (Contributed by NM, 8-Apr-2007.)
Hypothesis
Ref Expression
ssimaex.1 𝐴 ∈ V
Assertion
Ref Expression
ssimaex ((Fun 𝐹𝐵 ⊆ (𝐹𝐴)) → ∃𝑥(𝑥𝐴𝐵 = (𝐹𝑥)))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝑥,𝐹

Proof of Theorem ssimaex
Dummy variables 𝑤 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dmres 4659 . . . . 5 dom (𝐹𝐴) = (𝐴 ∩ dom 𝐹)
21imaeq2i 4693 . . . 4 (𝐹 “ dom (𝐹𝐴)) = (𝐹 “ (𝐴 ∩ dom 𝐹))
3 imadmres 4840 . . . 4 (𝐹 “ dom (𝐹𝐴)) = (𝐹𝐴)
42, 3eqtr3i 2078 . . 3 (𝐹 “ (𝐴 ∩ dom 𝐹)) = (𝐹𝐴)
54sseq2i 2997 . 2 (𝐵 ⊆ (𝐹 “ (𝐴 ∩ dom 𝐹)) ↔ 𝐵 ⊆ (𝐹𝐴))
6 ssrab2 3052 . . . 4 {𝑦 ∈ (𝐴 ∩ dom 𝐹) ∣ (𝐹𝑦) ∈ 𝐵} ⊆ (𝐴 ∩ dom 𝐹)
7 ssel2 2967 . . . . . . . . 9 ((𝐵 ⊆ (𝐹 “ (𝐴 ∩ dom 𝐹)) ∧ 𝑧𝐵) → 𝑧 ∈ (𝐹 “ (𝐴 ∩ dom 𝐹)))
87adantll 453 . . . . . . . 8 (((Fun 𝐹𝐵 ⊆ (𝐹 “ (𝐴 ∩ dom 𝐹))) ∧ 𝑧𝐵) → 𝑧 ∈ (𝐹 “ (𝐴 ∩ dom 𝐹)))
9 fvelima 5252 . . . . . . . . . . . 12 ((Fun 𝐹𝑧 ∈ (𝐹 “ (𝐴 ∩ dom 𝐹))) → ∃𝑤 ∈ (𝐴 ∩ dom 𝐹)(𝐹𝑤) = 𝑧)
109ex 112 . . . . . . . . . . 11 (Fun 𝐹 → (𝑧 ∈ (𝐹 “ (𝐴 ∩ dom 𝐹)) → ∃𝑤 ∈ (𝐴 ∩ dom 𝐹)(𝐹𝑤) = 𝑧))
1110adantr 265 . . . . . . . . . 10 ((Fun 𝐹𝑧𝐵) → (𝑧 ∈ (𝐹 “ (𝐴 ∩ dom 𝐹)) → ∃𝑤 ∈ (𝐴 ∩ dom 𝐹)(𝐹𝑤) = 𝑧))
12 eleq1a 2125 . . . . . . . . . . . . . . . 16 (𝑧𝐵 → ((𝐹𝑤) = 𝑧 → (𝐹𝑤) ∈ 𝐵))
1312anim2d 324 . . . . . . . . . . . . . . 15 (𝑧𝐵 → ((𝑤 ∈ (𝐴 ∩ dom 𝐹) ∧ (𝐹𝑤) = 𝑧) → (𝑤 ∈ (𝐴 ∩ dom 𝐹) ∧ (𝐹𝑤) ∈ 𝐵)))
14 fveq2 5205 . . . . . . . . . . . . . . . . 17 (𝑦 = 𝑤 → (𝐹𝑦) = (𝐹𝑤))
1514eleq1d 2122 . . . . . . . . . . . . . . . 16 (𝑦 = 𝑤 → ((𝐹𝑦) ∈ 𝐵 ↔ (𝐹𝑤) ∈ 𝐵))
1615elrab 2720 . . . . . . . . . . . . . . 15 (𝑤 ∈ {𝑦 ∈ (𝐴 ∩ dom 𝐹) ∣ (𝐹𝑦) ∈ 𝐵} ↔ (𝑤 ∈ (𝐴 ∩ dom 𝐹) ∧ (𝐹𝑤) ∈ 𝐵))
1713, 16syl6ibr 155 . . . . . . . . . . . . . 14 (𝑧𝐵 → ((𝑤 ∈ (𝐴 ∩ dom 𝐹) ∧ (𝐹𝑤) = 𝑧) → 𝑤 ∈ {𝑦 ∈ (𝐴 ∩ dom 𝐹) ∣ (𝐹𝑦) ∈ 𝐵}))
18 simpr 107 . . . . . . . . . . . . . . 15 ((𝑤 ∈ (𝐴 ∩ dom 𝐹) ∧ (𝐹𝑤) = 𝑧) → (𝐹𝑤) = 𝑧)
1918a1i 9 . . . . . . . . . . . . . 14 (𝑧𝐵 → ((𝑤 ∈ (𝐴 ∩ dom 𝐹) ∧ (𝐹𝑤) = 𝑧) → (𝐹𝑤) = 𝑧))
2017, 19jcad 295 . . . . . . . . . . . . 13 (𝑧𝐵 → ((𝑤 ∈ (𝐴 ∩ dom 𝐹) ∧ (𝐹𝑤) = 𝑧) → (𝑤 ∈ {𝑦 ∈ (𝐴 ∩ dom 𝐹) ∣ (𝐹𝑦) ∈ 𝐵} ∧ (𝐹𝑤) = 𝑧)))
2120reximdv2 2435 . . . . . . . . . . . 12 (𝑧𝐵 → (∃𝑤 ∈ (𝐴 ∩ dom 𝐹)(𝐹𝑤) = 𝑧 → ∃𝑤 ∈ {𝑦 ∈ (𝐴 ∩ dom 𝐹) ∣ (𝐹𝑦) ∈ 𝐵} (𝐹𝑤) = 𝑧))
2221adantl 266 . . . . . . . . . . 11 ((Fun 𝐹𝑧𝐵) → (∃𝑤 ∈ (𝐴 ∩ dom 𝐹)(𝐹𝑤) = 𝑧 → ∃𝑤 ∈ {𝑦 ∈ (𝐴 ∩ dom 𝐹) ∣ (𝐹𝑦) ∈ 𝐵} (𝐹𝑤) = 𝑧))
23 funfn 4958 . . . . . . . . . . . . 13 (Fun 𝐹𝐹 Fn dom 𝐹)
24 inss2 3185 . . . . . . . . . . . . . . 15 (𝐴 ∩ dom 𝐹) ⊆ dom 𝐹
256, 24sstri 2981 . . . . . . . . . . . . . 14 {𝑦 ∈ (𝐴 ∩ dom 𝐹) ∣ (𝐹𝑦) ∈ 𝐵} ⊆ dom 𝐹
26 fvelimab 5256 . . . . . . . . . . . . . 14 ((𝐹 Fn dom 𝐹 ∧ {𝑦 ∈ (𝐴 ∩ dom 𝐹) ∣ (𝐹𝑦) ∈ 𝐵} ⊆ dom 𝐹) → (𝑧 ∈ (𝐹 “ {𝑦 ∈ (𝐴 ∩ dom 𝐹) ∣ (𝐹𝑦) ∈ 𝐵}) ↔ ∃𝑤 ∈ {𝑦 ∈ (𝐴 ∩ dom 𝐹) ∣ (𝐹𝑦) ∈ 𝐵} (𝐹𝑤) = 𝑧))
2725, 26mpan2 409 . . . . . . . . . . . . 13 (𝐹 Fn dom 𝐹 → (𝑧 ∈ (𝐹 “ {𝑦 ∈ (𝐴 ∩ dom 𝐹) ∣ (𝐹𝑦) ∈ 𝐵}) ↔ ∃𝑤 ∈ {𝑦 ∈ (𝐴 ∩ dom 𝐹) ∣ (𝐹𝑦) ∈ 𝐵} (𝐹𝑤) = 𝑧))
2823, 27sylbi 118 . . . . . . . . . . . 12 (Fun 𝐹 → (𝑧 ∈ (𝐹 “ {𝑦 ∈ (𝐴 ∩ dom 𝐹) ∣ (𝐹𝑦) ∈ 𝐵}) ↔ ∃𝑤 ∈ {𝑦 ∈ (𝐴 ∩ dom 𝐹) ∣ (𝐹𝑦) ∈ 𝐵} (𝐹𝑤) = 𝑧))
2928adantr 265 . . . . . . . . . . 11 ((Fun 𝐹𝑧𝐵) → (𝑧 ∈ (𝐹 “ {𝑦 ∈ (𝐴 ∩ dom 𝐹) ∣ (𝐹𝑦) ∈ 𝐵}) ↔ ∃𝑤 ∈ {𝑦 ∈ (𝐴 ∩ dom 𝐹) ∣ (𝐹𝑦) ∈ 𝐵} (𝐹𝑤) = 𝑧))
3022, 29sylibrd 162 . . . . . . . . . 10 ((Fun 𝐹𝑧𝐵) → (∃𝑤 ∈ (𝐴 ∩ dom 𝐹)(𝐹𝑤) = 𝑧𝑧 ∈ (𝐹 “ {𝑦 ∈ (𝐴 ∩ dom 𝐹) ∣ (𝐹𝑦) ∈ 𝐵})))
3111, 30syld 44 . . . . . . . . 9 ((Fun 𝐹𝑧𝐵) → (𝑧 ∈ (𝐹 “ (𝐴 ∩ dom 𝐹)) → 𝑧 ∈ (𝐹 “ {𝑦 ∈ (𝐴 ∩ dom 𝐹) ∣ (𝐹𝑦) ∈ 𝐵})))
3231adantlr 454 . . . . . . . 8 (((Fun 𝐹𝐵 ⊆ (𝐹 “ (𝐴 ∩ dom 𝐹))) ∧ 𝑧𝐵) → (𝑧 ∈ (𝐹 “ (𝐴 ∩ dom 𝐹)) → 𝑧 ∈ (𝐹 “ {𝑦 ∈ (𝐴 ∩ dom 𝐹) ∣ (𝐹𝑦) ∈ 𝐵})))
338, 32mpd 13 . . . . . . 7 (((Fun 𝐹𝐵 ⊆ (𝐹 “ (𝐴 ∩ dom 𝐹))) ∧ 𝑧𝐵) → 𝑧 ∈ (𝐹 “ {𝑦 ∈ (𝐴 ∩ dom 𝐹) ∣ (𝐹𝑦) ∈ 𝐵}))
3433ex 112 . . . . . 6 ((Fun 𝐹𝐵 ⊆ (𝐹 “ (𝐴 ∩ dom 𝐹))) → (𝑧𝐵𝑧 ∈ (𝐹 “ {𝑦 ∈ (𝐴 ∩ dom 𝐹) ∣ (𝐹𝑦) ∈ 𝐵})))
35 fvelima 5252 . . . . . . . . 9 ((Fun 𝐹𝑧 ∈ (𝐹 “ {𝑦 ∈ (𝐴 ∩ dom 𝐹) ∣ (𝐹𝑦) ∈ 𝐵})) → ∃𝑤 ∈ {𝑦 ∈ (𝐴 ∩ dom 𝐹) ∣ (𝐹𝑦) ∈ 𝐵} (𝐹𝑤) = 𝑧)
3635ex 112 . . . . . . . 8 (Fun 𝐹 → (𝑧 ∈ (𝐹 “ {𝑦 ∈ (𝐴 ∩ dom 𝐹) ∣ (𝐹𝑦) ∈ 𝐵}) → ∃𝑤 ∈ {𝑦 ∈ (𝐴 ∩ dom 𝐹) ∣ (𝐹𝑦) ∈ 𝐵} (𝐹𝑤) = 𝑧))
37 eleq1 2116 . . . . . . . . . . . 12 ((𝐹𝑤) = 𝑧 → ((𝐹𝑤) ∈ 𝐵𝑧𝐵))
3837biimpcd 152 . . . . . . . . . . 11 ((𝐹𝑤) ∈ 𝐵 → ((𝐹𝑤) = 𝑧𝑧𝐵))
3938adantl 266 . . . . . . . . . 10 ((𝑤 ∈ (𝐴 ∩ dom 𝐹) ∧ (𝐹𝑤) ∈ 𝐵) → ((𝐹𝑤) = 𝑧𝑧𝐵))
4016, 39sylbi 118 . . . . . . . . 9 (𝑤 ∈ {𝑦 ∈ (𝐴 ∩ dom 𝐹) ∣ (𝐹𝑦) ∈ 𝐵} → ((𝐹𝑤) = 𝑧𝑧𝐵))
4140rexlimiv 2444 . . . . . . . 8 (∃𝑤 ∈ {𝑦 ∈ (𝐴 ∩ dom 𝐹) ∣ (𝐹𝑦) ∈ 𝐵} (𝐹𝑤) = 𝑧𝑧𝐵)
4236, 41syl6 33 . . . . . . 7 (Fun 𝐹 → (𝑧 ∈ (𝐹 “ {𝑦 ∈ (𝐴 ∩ dom 𝐹) ∣ (𝐹𝑦) ∈ 𝐵}) → 𝑧𝐵))
4342adantr 265 . . . . . 6 ((Fun 𝐹𝐵 ⊆ (𝐹 “ (𝐴 ∩ dom 𝐹))) → (𝑧 ∈ (𝐹 “ {𝑦 ∈ (𝐴 ∩ dom 𝐹) ∣ (𝐹𝑦) ∈ 𝐵}) → 𝑧𝐵))
4434, 43impbid 124 . . . . 5 ((Fun 𝐹𝐵 ⊆ (𝐹 “ (𝐴 ∩ dom 𝐹))) → (𝑧𝐵𝑧 ∈ (𝐹 “ {𝑦 ∈ (𝐴 ∩ dom 𝐹) ∣ (𝐹𝑦) ∈ 𝐵})))
4544eqrdv 2054 . . . 4 ((Fun 𝐹𝐵 ⊆ (𝐹 “ (𝐴 ∩ dom 𝐹))) → 𝐵 = (𝐹 “ {𝑦 ∈ (𝐴 ∩ dom 𝐹) ∣ (𝐹𝑦) ∈ 𝐵}))
46 ssimaex.1 . . . . . . 7 𝐴 ∈ V
4746inex1 3918 . . . . . 6 (𝐴 ∩ dom 𝐹) ∈ V
4847rabex 3928 . . . . 5 {𝑦 ∈ (𝐴 ∩ dom 𝐹) ∣ (𝐹𝑦) ∈ 𝐵} ∈ V
49 sseq1 2993 . . . . . 6 (𝑥 = {𝑦 ∈ (𝐴 ∩ dom 𝐹) ∣ (𝐹𝑦) ∈ 𝐵} → (𝑥 ⊆ (𝐴 ∩ dom 𝐹) ↔ {𝑦 ∈ (𝐴 ∩ dom 𝐹) ∣ (𝐹𝑦) ∈ 𝐵} ⊆ (𝐴 ∩ dom 𝐹)))
50 imaeq2 4691 . . . . . . 7 (𝑥 = {𝑦 ∈ (𝐴 ∩ dom 𝐹) ∣ (𝐹𝑦) ∈ 𝐵} → (𝐹𝑥) = (𝐹 “ {𝑦 ∈ (𝐴 ∩ dom 𝐹) ∣ (𝐹𝑦) ∈ 𝐵}))
5150eqeq2d 2067 . . . . . 6 (𝑥 = {𝑦 ∈ (𝐴 ∩ dom 𝐹) ∣ (𝐹𝑦) ∈ 𝐵} → (𝐵 = (𝐹𝑥) ↔ 𝐵 = (𝐹 “ {𝑦 ∈ (𝐴 ∩ dom 𝐹) ∣ (𝐹𝑦) ∈ 𝐵})))
5249, 51anbi12d 450 . . . . 5 (𝑥 = {𝑦 ∈ (𝐴 ∩ dom 𝐹) ∣ (𝐹𝑦) ∈ 𝐵} → ((𝑥 ⊆ (𝐴 ∩ dom 𝐹) ∧ 𝐵 = (𝐹𝑥)) ↔ ({𝑦 ∈ (𝐴 ∩ dom 𝐹) ∣ (𝐹𝑦) ∈ 𝐵} ⊆ (𝐴 ∩ dom 𝐹) ∧ 𝐵 = (𝐹 “ {𝑦 ∈ (𝐴 ∩ dom 𝐹) ∣ (𝐹𝑦) ∈ 𝐵}))))
5348, 52spcev 2664 . . . 4 (({𝑦 ∈ (𝐴 ∩ dom 𝐹) ∣ (𝐹𝑦) ∈ 𝐵} ⊆ (𝐴 ∩ dom 𝐹) ∧ 𝐵 = (𝐹 “ {𝑦 ∈ (𝐴 ∩ dom 𝐹) ∣ (𝐹𝑦) ∈ 𝐵})) → ∃𝑥(𝑥 ⊆ (𝐴 ∩ dom 𝐹) ∧ 𝐵 = (𝐹𝑥)))
546, 45, 53sylancr 399 . . 3 ((Fun 𝐹𝐵 ⊆ (𝐹 “ (𝐴 ∩ dom 𝐹))) → ∃𝑥(𝑥 ⊆ (𝐴 ∩ dom 𝐹) ∧ 𝐵 = (𝐹𝑥)))
55 inss1 3184 . . . . . 6 (𝐴 ∩ dom 𝐹) ⊆ 𝐴
56 sstr 2980 . . . . . 6 ((𝑥 ⊆ (𝐴 ∩ dom 𝐹) ∧ (𝐴 ∩ dom 𝐹) ⊆ 𝐴) → 𝑥𝐴)
5755, 56mpan2 409 . . . . 5 (𝑥 ⊆ (𝐴 ∩ dom 𝐹) → 𝑥𝐴)
5857anim1i 327 . . . 4 ((𝑥 ⊆ (𝐴 ∩ dom 𝐹) ∧ 𝐵 = (𝐹𝑥)) → (𝑥𝐴𝐵 = (𝐹𝑥)))
5958eximi 1507 . . 3 (∃𝑥(𝑥 ⊆ (𝐴 ∩ dom 𝐹) ∧ 𝐵 = (𝐹𝑥)) → ∃𝑥(𝑥𝐴𝐵 = (𝐹𝑥)))
6054, 59syl 14 . 2 ((Fun 𝐹𝐵 ⊆ (𝐹 “ (𝐴 ∩ dom 𝐹))) → ∃𝑥(𝑥𝐴𝐵 = (𝐹𝑥)))
615, 60sylan2br 276 1 ((Fun 𝐹𝐵 ⊆ (𝐹𝐴)) → ∃𝑥(𝑥𝐴𝐵 = (𝐹𝑥)))
 Colors of variables: wff set class Syntax hints:   → wi 4   ∧ wa 101   ↔ wb 102   = wceq 1259  ∃wex 1397   ∈ wcel 1409  ∃wrex 2324  {crab 2327  Vcvv 2574   ∩ cin 2943   ⊆ wss 2944  dom cdm 4372   ↾ cres 4374   “ cima 4375  Fun wfun 4923   Fn wfn 4924  ‘cfv 4929 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 103  ax-ia2 104  ax-ia3 105  ax-io 640  ax-5 1352  ax-7 1353  ax-gen 1354  ax-ie1 1398  ax-ie2 1399  ax-8 1411  ax-10 1412  ax-11 1413  ax-i12 1414  ax-bndl 1415  ax-4 1416  ax-14 1421  ax-17 1435  ax-i9 1439  ax-ial 1443  ax-i5r 1444  ax-ext 2038  ax-sep 3902  ax-pow 3954  ax-pr 3971 This theorem depends on definitions:  df-bi 114  df-3an 898  df-tru 1262  df-nf 1366  df-sb 1662  df-eu 1919  df-mo 1920  df-clab 2043  df-cleq 2049  df-clel 2052  df-nfc 2183  df-ral 2328  df-rex 2329  df-rab 2332  df-v 2576  df-sbc 2787  df-un 2949  df-in 2951  df-ss 2958  df-pw 3388  df-sn 3408  df-pr 3409  df-op 3411  df-uni 3608  df-br 3792  df-opab 3846  df-id 4057  df-xp 4378  df-rel 4379  df-cnv 4380  df-co 4381  df-dm 4382  df-rn 4383  df-res 4384  df-ima 4385  df-iota 4894  df-fun 4931  df-fn 4932  df-fv 4937 This theorem is referenced by:  ssimaexg  5262
 Copyright terms: Public domain W3C validator