MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  0nelfb Structured version   Visualization version   GIF version

Theorem 0nelfb 21575
Description: No filter base contains the empty set. (Contributed by Jeff Hankins, 1-Sep-2009.) (Revised by Mario Carneiro, 28-Jul-2015.)
Assertion
Ref Expression
0nelfb (𝐹 ∈ (fBas‘𝐵) → ¬ ∅ ∈ 𝐹)

Proof of Theorem 0nelfb
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elfvdm 6187 . . . . 5 (𝐹 ∈ (fBas‘𝐵) → 𝐵 ∈ dom fBas)
2 isfbas 21573 . . . . 5 (𝐵 ∈ dom fBas → (𝐹 ∈ (fBas‘𝐵) ↔ (𝐹 ⊆ 𝒫 𝐵 ∧ (𝐹 ≠ ∅ ∧ ∅ ∉ 𝐹 ∧ ∀𝑥𝐹𝑦𝐹 (𝐹 ∩ 𝒫 (𝑥𝑦)) ≠ ∅))))
31, 2syl 17 . . . 4 (𝐹 ∈ (fBas‘𝐵) → (𝐹 ∈ (fBas‘𝐵) ↔ (𝐹 ⊆ 𝒫 𝐵 ∧ (𝐹 ≠ ∅ ∧ ∅ ∉ 𝐹 ∧ ∀𝑥𝐹𝑦𝐹 (𝐹 ∩ 𝒫 (𝑥𝑦)) ≠ ∅))))
43ibi 256 . . 3 (𝐹 ∈ (fBas‘𝐵) → (𝐹 ⊆ 𝒫 𝐵 ∧ (𝐹 ≠ ∅ ∧ ∅ ∉ 𝐹 ∧ ∀𝑥𝐹𝑦𝐹 (𝐹 ∩ 𝒫 (𝑥𝑦)) ≠ ∅)))
5 simpr2 1066 . . 3 ((𝐹 ⊆ 𝒫 𝐵 ∧ (𝐹 ≠ ∅ ∧ ∅ ∉ 𝐹 ∧ ∀𝑥𝐹𝑦𝐹 (𝐹 ∩ 𝒫 (𝑥𝑦)) ≠ ∅)) → ∅ ∉ 𝐹)
64, 5syl 17 . 2 (𝐹 ∈ (fBas‘𝐵) → ∅ ∉ 𝐹)
7 df-nel 2894 . 2 (∅ ∉ 𝐹 ↔ ¬ ∅ ∈ 𝐹)
86, 7sylib 208 1 (𝐹 ∈ (fBas‘𝐵) → ¬ ∅ ∈ 𝐹)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 196  wa 384  w3a 1036  wcel 1987  wne 2790  wnel 2893  wral 2908  cin 3559  wss 3560  c0 3897  𝒫 cpw 4136  dom cdm 5084  cfv 5857  fBascfbas 19674
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-sep 4751  ax-nul 4759  ax-pow 4813  ax-pr 4877
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-nel 2894  df-ral 2913  df-rex 2914  df-rab 2917  df-v 3192  df-sbc 3423  df-csb 3520  df-dif 3563  df-un 3565  df-in 3567  df-ss 3574  df-nul 3898  df-if 4065  df-pw 4138  df-sn 4156  df-pr 4158  df-op 4162  df-uni 4410  df-br 4624  df-opab 4684  df-mpt 4685  df-id 4999  df-xp 5090  df-rel 5091  df-cnv 5092  df-co 5093  df-dm 5094  df-rn 5095  df-res 5096  df-ima 5097  df-iota 5820  df-fun 5859  df-fv 5865  df-fbas 19683
This theorem is referenced by:  fbdmn0  21578  fbncp  21583  fbun  21584  fbfinnfr  21585  0nelfil  21593  fsubbas  21611  fbasfip  21612  fgcl  21622  fbasrn  21628  uzfbas  21642  ucnextcn  22048
  Copyright terms: Public domain W3C validator