![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 0uhgrsubgr | Structured version Visualization version GIF version |
Description: The null graph (as hypergraph) is a subgraph of all graphs. (Contributed by AV, 17-Nov-2020.) (Proof shortened by AV, 28-Nov-2020.) |
Ref | Expression |
---|---|
0uhgrsubgr | ⊢ ((𝐺 ∈ 𝑊 ∧ 𝑆 ∈ UHGraph ∧ (Vtx‘𝑆) = ∅) → 𝑆 SubGraph 𝐺) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3simpa 1078 | . 2 ⊢ ((𝐺 ∈ 𝑊 ∧ 𝑆 ∈ UHGraph ∧ (Vtx‘𝑆) = ∅) → (𝐺 ∈ 𝑊 ∧ 𝑆 ∈ UHGraph)) | |
2 | 0ss 4005 | . . . 4 ⊢ ∅ ⊆ (Vtx‘𝐺) | |
3 | sseq1 3659 | . . . 4 ⊢ ((Vtx‘𝑆) = ∅ → ((Vtx‘𝑆) ⊆ (Vtx‘𝐺) ↔ ∅ ⊆ (Vtx‘𝐺))) | |
4 | 2, 3 | mpbiri 248 | . . 3 ⊢ ((Vtx‘𝑆) = ∅ → (Vtx‘𝑆) ⊆ (Vtx‘𝐺)) |
5 | 4 | 3ad2ant3 1104 | . 2 ⊢ ((𝐺 ∈ 𝑊 ∧ 𝑆 ∈ UHGraph ∧ (Vtx‘𝑆) = ∅) → (Vtx‘𝑆) ⊆ (Vtx‘𝐺)) |
6 | eqid 2651 | . . . 4 ⊢ (iEdg‘𝑆) = (iEdg‘𝑆) | |
7 | 6 | uhgrfun 26006 | . . 3 ⊢ (𝑆 ∈ UHGraph → Fun (iEdg‘𝑆)) |
8 | 7 | 3ad2ant2 1103 | . 2 ⊢ ((𝐺 ∈ 𝑊 ∧ 𝑆 ∈ UHGraph ∧ (Vtx‘𝑆) = ∅) → Fun (iEdg‘𝑆)) |
9 | edgval 25986 | . . 3 ⊢ (Edg‘𝑆) = ran (iEdg‘𝑆) | |
10 | uhgr0vb 26012 | . . . . . . . 8 ⊢ ((𝑆 ∈ UHGraph ∧ (Vtx‘𝑆) = ∅) → (𝑆 ∈ UHGraph ↔ (iEdg‘𝑆) = ∅)) | |
11 | rneq 5383 | . . . . . . . . 9 ⊢ ((iEdg‘𝑆) = ∅ → ran (iEdg‘𝑆) = ran ∅) | |
12 | rn0 5409 | . . . . . . . . 9 ⊢ ran ∅ = ∅ | |
13 | 11, 12 | syl6eq 2701 | . . . . . . . 8 ⊢ ((iEdg‘𝑆) = ∅ → ran (iEdg‘𝑆) = ∅) |
14 | 10, 13 | syl6bi 243 | . . . . . . 7 ⊢ ((𝑆 ∈ UHGraph ∧ (Vtx‘𝑆) = ∅) → (𝑆 ∈ UHGraph → ran (iEdg‘𝑆) = ∅)) |
15 | 14 | ex 449 | . . . . . 6 ⊢ (𝑆 ∈ UHGraph → ((Vtx‘𝑆) = ∅ → (𝑆 ∈ UHGraph → ran (iEdg‘𝑆) = ∅))) |
16 | 15 | pm2.43a 54 | . . . . 5 ⊢ (𝑆 ∈ UHGraph → ((Vtx‘𝑆) = ∅ → ran (iEdg‘𝑆) = ∅)) |
17 | 16 | a1i 11 | . . . 4 ⊢ (𝐺 ∈ 𝑊 → (𝑆 ∈ UHGraph → ((Vtx‘𝑆) = ∅ → ran (iEdg‘𝑆) = ∅))) |
18 | 17 | 3imp 1275 | . . 3 ⊢ ((𝐺 ∈ 𝑊 ∧ 𝑆 ∈ UHGraph ∧ (Vtx‘𝑆) = ∅) → ran (iEdg‘𝑆) = ∅) |
19 | 9, 18 | syl5eq 2697 | . 2 ⊢ ((𝐺 ∈ 𝑊 ∧ 𝑆 ∈ UHGraph ∧ (Vtx‘𝑆) = ∅) → (Edg‘𝑆) = ∅) |
20 | egrsubgr 26214 | . 2 ⊢ (((𝐺 ∈ 𝑊 ∧ 𝑆 ∈ UHGraph) ∧ (Vtx‘𝑆) ⊆ (Vtx‘𝐺) ∧ (Fun (iEdg‘𝑆) ∧ (Edg‘𝑆) = ∅)) → 𝑆 SubGraph 𝐺) | |
21 | 1, 5, 8, 19, 20 | syl112anc 1370 | 1 ⊢ ((𝐺 ∈ 𝑊 ∧ 𝑆 ∈ UHGraph ∧ (Vtx‘𝑆) = ∅) → 𝑆 SubGraph 𝐺) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 383 ∧ w3a 1054 = wceq 1523 ∈ wcel 2030 ⊆ wss 3607 ∅c0 3948 class class class wbr 4685 ran crn 5144 Fun wfun 5920 ‘cfv 5926 Vtxcvtx 25919 iEdgciedg 25920 Edgcedg 25984 UHGraphcuhgr 25996 SubGraph csubgr 26204 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1762 ax-4 1777 ax-5 1879 ax-6 1945 ax-7 1981 ax-8 2032 ax-9 2039 ax-10 2059 ax-11 2074 ax-12 2087 ax-13 2282 ax-ext 2631 ax-sep 4814 ax-nul 4822 ax-pow 4873 ax-pr 4936 ax-un 6991 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3an 1056 df-tru 1526 df-ex 1745 df-nf 1750 df-sb 1938 df-eu 2502 df-mo 2503 df-clab 2638 df-cleq 2644 df-clel 2647 df-nfc 2782 df-ral 2946 df-rex 2947 df-rab 2950 df-v 3233 df-sbc 3469 df-csb 3567 df-dif 3610 df-un 3612 df-in 3614 df-ss 3621 df-nul 3949 df-if 4120 df-pw 4193 df-sn 4211 df-pr 4213 df-op 4217 df-uni 4469 df-br 4686 df-opab 4746 df-mpt 4763 df-id 5053 df-xp 5149 df-rel 5150 df-cnv 5151 df-co 5152 df-dm 5153 df-rn 5154 df-res 5155 df-iota 5889 df-fun 5928 df-fn 5929 df-f 5930 df-fv 5934 df-edg 25985 df-uhgr 25998 df-subgr 26205 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |