MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  0uhgrsubgr Structured version   Visualization version   GIF version

Theorem 0uhgrsubgr 27061
Description: The null graph (as hypergraph) is a subgraph of all graphs. (Contributed by AV, 17-Nov-2020.) (Proof shortened by AV, 28-Nov-2020.)
Assertion
Ref Expression
0uhgrsubgr ((𝐺𝑊𝑆 ∈ UHGraph ∧ (Vtx‘𝑆) = ∅) → 𝑆 SubGraph 𝐺)

Proof of Theorem 0uhgrsubgr
StepHypRef Expression
1 3simpa 1144 . 2 ((𝐺𝑊𝑆 ∈ UHGraph ∧ (Vtx‘𝑆) = ∅) → (𝐺𝑊𝑆 ∈ UHGraph))
2 0ss 4350 . . . 4 ∅ ⊆ (Vtx‘𝐺)
3 sseq1 3992 . . . 4 ((Vtx‘𝑆) = ∅ → ((Vtx‘𝑆) ⊆ (Vtx‘𝐺) ↔ ∅ ⊆ (Vtx‘𝐺)))
42, 3mpbiri 260 . . 3 ((Vtx‘𝑆) = ∅ → (Vtx‘𝑆) ⊆ (Vtx‘𝐺))
543ad2ant3 1131 . 2 ((𝐺𝑊𝑆 ∈ UHGraph ∧ (Vtx‘𝑆) = ∅) → (Vtx‘𝑆) ⊆ (Vtx‘𝐺))
6 eqid 2821 . . . 4 (iEdg‘𝑆) = (iEdg‘𝑆)
76uhgrfun 26851 . . 3 (𝑆 ∈ UHGraph → Fun (iEdg‘𝑆))
873ad2ant2 1130 . 2 ((𝐺𝑊𝑆 ∈ UHGraph ∧ (Vtx‘𝑆) = ∅) → Fun (iEdg‘𝑆))
9 edgval 26834 . . 3 (Edg‘𝑆) = ran (iEdg‘𝑆)
10 uhgr0vb 26857 . . . . . . . 8 ((𝑆 ∈ UHGraph ∧ (Vtx‘𝑆) = ∅) → (𝑆 ∈ UHGraph ↔ (iEdg‘𝑆) = ∅))
11 rneq 5806 . . . . . . . . 9 ((iEdg‘𝑆) = ∅ → ran (iEdg‘𝑆) = ran ∅)
12 rn0 5796 . . . . . . . . 9 ran ∅ = ∅
1311, 12syl6eq 2872 . . . . . . . 8 ((iEdg‘𝑆) = ∅ → ran (iEdg‘𝑆) = ∅)
1410, 13syl6bi 255 . . . . . . 7 ((𝑆 ∈ UHGraph ∧ (Vtx‘𝑆) = ∅) → (𝑆 ∈ UHGraph → ran (iEdg‘𝑆) = ∅))
1514ex 415 . . . . . 6 (𝑆 ∈ UHGraph → ((Vtx‘𝑆) = ∅ → (𝑆 ∈ UHGraph → ran (iEdg‘𝑆) = ∅)))
1615pm2.43a 54 . . . . 5 (𝑆 ∈ UHGraph → ((Vtx‘𝑆) = ∅ → ran (iEdg‘𝑆) = ∅))
1716a1i 11 . . . 4 (𝐺𝑊 → (𝑆 ∈ UHGraph → ((Vtx‘𝑆) = ∅ → ran (iEdg‘𝑆) = ∅)))
18173imp 1107 . . 3 ((𝐺𝑊𝑆 ∈ UHGraph ∧ (Vtx‘𝑆) = ∅) → ran (iEdg‘𝑆) = ∅)
199, 18syl5eq 2868 . 2 ((𝐺𝑊𝑆 ∈ UHGraph ∧ (Vtx‘𝑆) = ∅) → (Edg‘𝑆) = ∅)
20 egrsubgr 27059 . 2 (((𝐺𝑊𝑆 ∈ UHGraph) ∧ (Vtx‘𝑆) ⊆ (Vtx‘𝐺) ∧ (Fun (iEdg‘𝑆) ∧ (Edg‘𝑆) = ∅)) → 𝑆 SubGraph 𝐺)
211, 5, 8, 19, 20syl112anc 1370 1 ((𝐺𝑊𝑆 ∈ UHGraph ∧ (Vtx‘𝑆) = ∅) → 𝑆 SubGraph 𝐺)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398  w3a 1083   = wceq 1537  wcel 2114  wss 3936  c0 4291   class class class wbr 5066  ran crn 5556  Fun wfun 6349  cfv 6355  Vtxcvtx 26781  iEdgciedg 26782  Edgcedg 26832  UHGraphcuhgr 26841   SubGraph csubgr 27049
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2793  ax-sep 5203  ax-nul 5210  ax-pow 5266  ax-pr 5330  ax-un 7461
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ral 3143  df-rex 3144  df-rab 3147  df-v 3496  df-sbc 3773  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4568  df-pr 4570  df-op 4574  df-uni 4839  df-br 5067  df-opab 5129  df-mpt 5147  df-id 5460  df-xp 5561  df-rel 5562  df-cnv 5563  df-co 5564  df-dm 5565  df-rn 5566  df-res 5567  df-iota 6314  df-fun 6357  df-fn 6358  df-f 6359  df-fv 6363  df-edg 26833  df-uhgr 26843  df-subgr 27050
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator