Users' Mathboxes Mathbox for Mario Carneiro < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  2goelgoanfmla1 Structured version   Visualization version   GIF version

Theorem 2goelgoanfmla1 32692
Description: Two Godel-sets of membership combined with a Godel-set for NAND is a Godel formula of height 1. (Contributed by AV, 17-Nov-2023.)
Hypothesis
Ref Expression
satfv1fvfmla1.x 𝑋 = ((𝐼𝑔𝐽)⊼𝑔(𝐾𝑔𝐿))
Assertion
Ref Expression
2goelgoanfmla1 (((𝐼 ∈ ω ∧ 𝐽 ∈ ω) ∧ (𝐾 ∈ ω ∧ 𝐿 ∈ ω)) → 𝑋 ∈ (Fmla‘1o))

Proof of Theorem 2goelgoanfmla1
Dummy variables 𝑖 𝑗 𝑘 𝑛 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpll 765 . . . . . 6 (((𝐼 ∈ ω ∧ 𝐽 ∈ ω) ∧ (𝐾 ∈ ω ∧ 𝐿 ∈ ω)) → 𝐼 ∈ ω)
2 simplr 767 . . . . . 6 (((𝐼 ∈ ω ∧ 𝐽 ∈ ω) ∧ (𝐾 ∈ ω ∧ 𝐿 ∈ ω)) → 𝐽 ∈ ω)
3 simprl 769 . . . . . 6 (((𝐼 ∈ ω ∧ 𝐽 ∈ ω) ∧ (𝐾 ∈ ω ∧ 𝐿 ∈ ω)) → 𝐾 ∈ ω)
4 simprr 771 . . . . . . . 8 (((𝐼 ∈ ω ∧ 𝐽 ∈ ω) ∧ (𝐾 ∈ ω ∧ 𝐿 ∈ ω)) → 𝐿 ∈ ω)
5 oveq2 7157 . . . . . . . . . . 11 (𝑛 = 𝐿 → (𝐾𝑔𝑛) = (𝐾𝑔𝐿))
65oveq2d 7165 . . . . . . . . . 10 (𝑛 = 𝐿 → ((𝐼𝑔𝐽)⊼𝑔(𝐾𝑔𝑛)) = ((𝐼𝑔𝐽)⊼𝑔(𝐾𝑔𝐿)))
76eqeq2d 2831 . . . . . . . . 9 (𝑛 = 𝐿 → (𝑋 = ((𝐼𝑔𝐽)⊼𝑔(𝐾𝑔𝑛)) ↔ 𝑋 = ((𝐼𝑔𝐽)⊼𝑔(𝐾𝑔𝐿))))
87adantl 484 . . . . . . . 8 ((((𝐼 ∈ ω ∧ 𝐽 ∈ ω) ∧ (𝐾 ∈ ω ∧ 𝐿 ∈ ω)) ∧ 𝑛 = 𝐿) → (𝑋 = ((𝐼𝑔𝐽)⊼𝑔(𝐾𝑔𝑛)) ↔ 𝑋 = ((𝐼𝑔𝐽)⊼𝑔(𝐾𝑔𝐿))))
9 satfv1fvfmla1.x . . . . . . . . 9 𝑋 = ((𝐼𝑔𝐽)⊼𝑔(𝐾𝑔𝐿))
109a1i 11 . . . . . . . 8 (((𝐼 ∈ ω ∧ 𝐽 ∈ ω) ∧ (𝐾 ∈ ω ∧ 𝐿 ∈ ω)) → 𝑋 = ((𝐼𝑔𝐽)⊼𝑔(𝐾𝑔𝐿)))
114, 8, 10rspcedvd 3623 . . . . . . 7 (((𝐼 ∈ ω ∧ 𝐽 ∈ ω) ∧ (𝐾 ∈ ω ∧ 𝐿 ∈ ω)) → ∃𝑛 ∈ ω 𝑋 = ((𝐼𝑔𝐽)⊼𝑔(𝐾𝑔𝑛)))
1211orcd 869 . . . . . 6 (((𝐼 ∈ ω ∧ 𝐽 ∈ ω) ∧ (𝐾 ∈ ω ∧ 𝐿 ∈ ω)) → (∃𝑛 ∈ ω 𝑋 = ((𝐼𝑔𝐽)⊼𝑔(𝐾𝑔𝑛)) ∨ 𝑋 = ∀𝑔𝐾(𝐼𝑔𝐽)))
13 oveq1 7156 . . . . . . . . . . 11 (𝑖 = 𝐼 → (𝑖𝑔𝑗) = (𝐼𝑔𝑗))
1413oveq1d 7164 . . . . . . . . . 10 (𝑖 = 𝐼 → ((𝑖𝑔𝑗)⊼𝑔(𝑘𝑔𝑛)) = ((𝐼𝑔𝑗)⊼𝑔(𝑘𝑔𝑛)))
1514eqeq2d 2831 . . . . . . . . 9 (𝑖 = 𝐼 → (𝑋 = ((𝑖𝑔𝑗)⊼𝑔(𝑘𝑔𝑛)) ↔ 𝑋 = ((𝐼𝑔𝑗)⊼𝑔(𝑘𝑔𝑛))))
1615rexbidv 3296 . . . . . . . 8 (𝑖 = 𝐼 → (∃𝑛 ∈ ω 𝑋 = ((𝑖𝑔𝑗)⊼𝑔(𝑘𝑔𝑛)) ↔ ∃𝑛 ∈ ω 𝑋 = ((𝐼𝑔𝑗)⊼𝑔(𝑘𝑔𝑛))))
17 eqidd 2821 . . . . . . . . . 10 (𝑖 = 𝐼𝑘 = 𝑘)
1817, 13goaleq12d 32619 . . . . . . . . 9 (𝑖 = 𝐼 → ∀𝑔𝑘(𝑖𝑔𝑗) = ∀𝑔𝑘(𝐼𝑔𝑗))
1918eqeq2d 2831 . . . . . . . 8 (𝑖 = 𝐼 → (𝑋 = ∀𝑔𝑘(𝑖𝑔𝑗) ↔ 𝑋 = ∀𝑔𝑘(𝐼𝑔𝑗)))
2016, 19orbi12d 915 . . . . . . 7 (𝑖 = 𝐼 → ((∃𝑛 ∈ ω 𝑋 = ((𝑖𝑔𝑗)⊼𝑔(𝑘𝑔𝑛)) ∨ 𝑋 = ∀𝑔𝑘(𝑖𝑔𝑗)) ↔ (∃𝑛 ∈ ω 𝑋 = ((𝐼𝑔𝑗)⊼𝑔(𝑘𝑔𝑛)) ∨ 𝑋 = ∀𝑔𝑘(𝐼𝑔𝑗))))
21 oveq2 7157 . . . . . . . . . . 11 (𝑗 = 𝐽 → (𝐼𝑔𝑗) = (𝐼𝑔𝐽))
2221oveq1d 7164 . . . . . . . . . 10 (𝑗 = 𝐽 → ((𝐼𝑔𝑗)⊼𝑔(𝑘𝑔𝑛)) = ((𝐼𝑔𝐽)⊼𝑔(𝑘𝑔𝑛)))
2322eqeq2d 2831 . . . . . . . . 9 (𝑗 = 𝐽 → (𝑋 = ((𝐼𝑔𝑗)⊼𝑔(𝑘𝑔𝑛)) ↔ 𝑋 = ((𝐼𝑔𝐽)⊼𝑔(𝑘𝑔𝑛))))
2423rexbidv 3296 . . . . . . . 8 (𝑗 = 𝐽 → (∃𝑛 ∈ ω 𝑋 = ((𝐼𝑔𝑗)⊼𝑔(𝑘𝑔𝑛)) ↔ ∃𝑛 ∈ ω 𝑋 = ((𝐼𝑔𝐽)⊼𝑔(𝑘𝑔𝑛))))
25 eqidd 2821 . . . . . . . . . 10 (𝑗 = 𝐽𝑘 = 𝑘)
2625, 21goaleq12d 32619 . . . . . . . . 9 (𝑗 = 𝐽 → ∀𝑔𝑘(𝐼𝑔𝑗) = ∀𝑔𝑘(𝐼𝑔𝐽))
2726eqeq2d 2831 . . . . . . . 8 (𝑗 = 𝐽 → (𝑋 = ∀𝑔𝑘(𝐼𝑔𝑗) ↔ 𝑋 = ∀𝑔𝑘(𝐼𝑔𝐽)))
2824, 27orbi12d 915 . . . . . . 7 (𝑗 = 𝐽 → ((∃𝑛 ∈ ω 𝑋 = ((𝐼𝑔𝑗)⊼𝑔(𝑘𝑔𝑛)) ∨ 𝑋 = ∀𝑔𝑘(𝐼𝑔𝑗)) ↔ (∃𝑛 ∈ ω 𝑋 = ((𝐼𝑔𝐽)⊼𝑔(𝑘𝑔𝑛)) ∨ 𝑋 = ∀𝑔𝑘(𝐼𝑔𝐽))))
29 oveq1 7156 . . . . . . . . . . 11 (𝑘 = 𝐾 → (𝑘𝑔𝑛) = (𝐾𝑔𝑛))
3029oveq2d 7165 . . . . . . . . . 10 (𝑘 = 𝐾 → ((𝐼𝑔𝐽)⊼𝑔(𝑘𝑔𝑛)) = ((𝐼𝑔𝐽)⊼𝑔(𝐾𝑔𝑛)))
3130eqeq2d 2831 . . . . . . . . 9 (𝑘 = 𝐾 → (𝑋 = ((𝐼𝑔𝐽)⊼𝑔(𝑘𝑔𝑛)) ↔ 𝑋 = ((𝐼𝑔𝐽)⊼𝑔(𝐾𝑔𝑛))))
3231rexbidv 3296 . . . . . . . 8 (𝑘 = 𝐾 → (∃𝑛 ∈ ω 𝑋 = ((𝐼𝑔𝐽)⊼𝑔(𝑘𝑔𝑛)) ↔ ∃𝑛 ∈ ω 𝑋 = ((𝐼𝑔𝐽)⊼𝑔(𝐾𝑔𝑛))))
33 id 22 . . . . . . . . . 10 (𝑘 = 𝐾𝑘 = 𝐾)
34 eqidd 2821 . . . . . . . . . 10 (𝑘 = 𝐾 → (𝐼𝑔𝐽) = (𝐼𝑔𝐽))
3533, 34goaleq12d 32619 . . . . . . . . 9 (𝑘 = 𝐾 → ∀𝑔𝑘(𝐼𝑔𝐽) = ∀𝑔𝐾(𝐼𝑔𝐽))
3635eqeq2d 2831 . . . . . . . 8 (𝑘 = 𝐾 → (𝑋 = ∀𝑔𝑘(𝐼𝑔𝐽) ↔ 𝑋 = ∀𝑔𝐾(𝐼𝑔𝐽)))
3732, 36orbi12d 915 . . . . . . 7 (𝑘 = 𝐾 → ((∃𝑛 ∈ ω 𝑋 = ((𝐼𝑔𝐽)⊼𝑔(𝑘𝑔𝑛)) ∨ 𝑋 = ∀𝑔𝑘(𝐼𝑔𝐽)) ↔ (∃𝑛 ∈ ω 𝑋 = ((𝐼𝑔𝐽)⊼𝑔(𝐾𝑔𝑛)) ∨ 𝑋 = ∀𝑔𝐾(𝐼𝑔𝐽))))
3820, 28, 37rspc3ev 3634 . . . . . 6 (((𝐼 ∈ ω ∧ 𝐽 ∈ ω ∧ 𝐾 ∈ ω) ∧ (∃𝑛 ∈ ω 𝑋 = ((𝐼𝑔𝐽)⊼𝑔(𝐾𝑔𝑛)) ∨ 𝑋 = ∀𝑔𝐾(𝐼𝑔𝐽))) → ∃𝑖 ∈ ω ∃𝑗 ∈ ω ∃𝑘 ∈ ω (∃𝑛 ∈ ω 𝑋 = ((𝑖𝑔𝑗)⊼𝑔(𝑘𝑔𝑛)) ∨ 𝑋 = ∀𝑔𝑘(𝑖𝑔𝑗)))
391, 2, 3, 12, 38syl31anc 1368 . . . . 5 (((𝐼 ∈ ω ∧ 𝐽 ∈ ω) ∧ (𝐾 ∈ ω ∧ 𝐿 ∈ ω)) → ∃𝑖 ∈ ω ∃𝑗 ∈ ω ∃𝑘 ∈ ω (∃𝑛 ∈ ω 𝑋 = ((𝑖𝑔𝑗)⊼𝑔(𝑘𝑔𝑛)) ∨ 𝑋 = ∀𝑔𝑘(𝑖𝑔𝑗)))
409ovexi 7183 . . . . . 6 𝑋 ∈ V
41 eqeq1 2824 . . . . . . . . . 10 (𝑥 = 𝑋 → (𝑥 = ((𝑖𝑔𝑗)⊼𝑔(𝑘𝑔𝑛)) ↔ 𝑋 = ((𝑖𝑔𝑗)⊼𝑔(𝑘𝑔𝑛))))
4241rexbidv 3296 . . . . . . . . 9 (𝑥 = 𝑋 → (∃𝑛 ∈ ω 𝑥 = ((𝑖𝑔𝑗)⊼𝑔(𝑘𝑔𝑛)) ↔ ∃𝑛 ∈ ω 𝑋 = ((𝑖𝑔𝑗)⊼𝑔(𝑘𝑔𝑛))))
43 eqeq1 2824 . . . . . . . . 9 (𝑥 = 𝑋 → (𝑥 = ∀𝑔𝑘(𝑖𝑔𝑗) ↔ 𝑋 = ∀𝑔𝑘(𝑖𝑔𝑗)))
4442, 43orbi12d 915 . . . . . . . 8 (𝑥 = 𝑋 → ((∃𝑛 ∈ ω 𝑥 = ((𝑖𝑔𝑗)⊼𝑔(𝑘𝑔𝑛)) ∨ 𝑥 = ∀𝑔𝑘(𝑖𝑔𝑗)) ↔ (∃𝑛 ∈ ω 𝑋 = ((𝑖𝑔𝑗)⊼𝑔(𝑘𝑔𝑛)) ∨ 𝑋 = ∀𝑔𝑘(𝑖𝑔𝑗))))
4544rexbidv 3296 . . . . . . 7 (𝑥 = 𝑋 → (∃𝑘 ∈ ω (∃𝑛 ∈ ω 𝑥 = ((𝑖𝑔𝑗)⊼𝑔(𝑘𝑔𝑛)) ∨ 𝑥 = ∀𝑔𝑘(𝑖𝑔𝑗)) ↔ ∃𝑘 ∈ ω (∃𝑛 ∈ ω 𝑋 = ((𝑖𝑔𝑗)⊼𝑔(𝑘𝑔𝑛)) ∨ 𝑋 = ∀𝑔𝑘(𝑖𝑔𝑗))))
46452rexbidv 3299 . . . . . 6 (𝑥 = 𝑋 → (∃𝑖 ∈ ω ∃𝑗 ∈ ω ∃𝑘 ∈ ω (∃𝑛 ∈ ω 𝑥 = ((𝑖𝑔𝑗)⊼𝑔(𝑘𝑔𝑛)) ∨ 𝑥 = ∀𝑔𝑘(𝑖𝑔𝑗)) ↔ ∃𝑖 ∈ ω ∃𝑗 ∈ ω ∃𝑘 ∈ ω (∃𝑛 ∈ ω 𝑋 = ((𝑖𝑔𝑗)⊼𝑔(𝑘𝑔𝑛)) ∨ 𝑋 = ∀𝑔𝑘(𝑖𝑔𝑗))))
4740, 46elab 3663 . . . . 5 (𝑋 ∈ {𝑥 ∣ ∃𝑖 ∈ ω ∃𝑗 ∈ ω ∃𝑘 ∈ ω (∃𝑛 ∈ ω 𝑥 = ((𝑖𝑔𝑗)⊼𝑔(𝑘𝑔𝑛)) ∨ 𝑥 = ∀𝑔𝑘(𝑖𝑔𝑗))} ↔ ∃𝑖 ∈ ω ∃𝑗 ∈ ω ∃𝑘 ∈ ω (∃𝑛 ∈ ω 𝑋 = ((𝑖𝑔𝑗)⊼𝑔(𝑘𝑔𝑛)) ∨ 𝑋 = ∀𝑔𝑘(𝑖𝑔𝑗)))
4839, 47sylibr 236 . . . 4 (((𝐼 ∈ ω ∧ 𝐽 ∈ ω) ∧ (𝐾 ∈ ω ∧ 𝐿 ∈ ω)) → 𝑋 ∈ {𝑥 ∣ ∃𝑖 ∈ ω ∃𝑗 ∈ ω ∃𝑘 ∈ ω (∃𝑛 ∈ ω 𝑥 = ((𝑖𝑔𝑗)⊼𝑔(𝑘𝑔𝑛)) ∨ 𝑥 = ∀𝑔𝑘(𝑖𝑔𝑗))})
4948olcd 870 . . 3 (((𝐼 ∈ ω ∧ 𝐽 ∈ ω) ∧ (𝐾 ∈ ω ∧ 𝐿 ∈ ω)) → (𝑋 ∈ ({∅} × (ω × ω)) ∨ 𝑋 ∈ {𝑥 ∣ ∃𝑖 ∈ ω ∃𝑗 ∈ ω ∃𝑘 ∈ ω (∃𝑛 ∈ ω 𝑥 = ((𝑖𝑔𝑗)⊼𝑔(𝑘𝑔𝑛)) ∨ 𝑥 = ∀𝑔𝑘(𝑖𝑔𝑗))}))
50 elun 4118 . . 3 (𝑋 ∈ (({∅} × (ω × ω)) ∪ {𝑥 ∣ ∃𝑖 ∈ ω ∃𝑗 ∈ ω ∃𝑘 ∈ ω (∃𝑛 ∈ ω 𝑥 = ((𝑖𝑔𝑗)⊼𝑔(𝑘𝑔𝑛)) ∨ 𝑥 = ∀𝑔𝑘(𝑖𝑔𝑗))}) ↔ (𝑋 ∈ ({∅} × (ω × ω)) ∨ 𝑋 ∈ {𝑥 ∣ ∃𝑖 ∈ ω ∃𝑗 ∈ ω ∃𝑘 ∈ ω (∃𝑛 ∈ ω 𝑥 = ((𝑖𝑔𝑗)⊼𝑔(𝑘𝑔𝑛)) ∨ 𝑥 = ∀𝑔𝑘(𝑖𝑔𝑗))}))
5149, 50sylibr 236 . 2 (((𝐼 ∈ ω ∧ 𝐽 ∈ ω) ∧ (𝐾 ∈ ω ∧ 𝐿 ∈ ω)) → 𝑋 ∈ (({∅} × (ω × ω)) ∪ {𝑥 ∣ ∃𝑖 ∈ ω ∃𝑗 ∈ ω ∃𝑘 ∈ ω (∃𝑛 ∈ ω 𝑥 = ((𝑖𝑔𝑗)⊼𝑔(𝑘𝑔𝑛)) ∨ 𝑥 = ∀𝑔𝑘(𝑖𝑔𝑗))}))
52 fmla1 32655 . 2 (Fmla‘1o) = (({∅} × (ω × ω)) ∪ {𝑥 ∣ ∃𝑖 ∈ ω ∃𝑗 ∈ ω ∃𝑘 ∈ ω (∃𝑛 ∈ ω 𝑥 = ((𝑖𝑔𝑗)⊼𝑔(𝑘𝑔𝑛)) ∨ 𝑥 = ∀𝑔𝑘(𝑖𝑔𝑗))})
5351, 52eleqtrrdi 2923 1 (((𝐼 ∈ ω ∧ 𝐽 ∈ ω) ∧ (𝐾 ∈ ω ∧ 𝐿 ∈ ω)) → 𝑋 ∈ (Fmla‘1o))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398  wo 843   = wceq 1536  wcel 2113  {cab 2798  wrex 3138  cun 3927  c0 4284  {csn 4560   × cxp 5546  cfv 6348  (class class class)co 7149  ωcom 7573  1oc1o 8088  𝑔cgoe 32601  𝑔cgna 32602  𝑔cgol 32603  Fmlacfmla 32605
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1969  ax-7 2014  ax-8 2115  ax-9 2123  ax-10 2144  ax-11 2160  ax-12 2176  ax-ext 2792  ax-rep 5183  ax-sep 5196  ax-nul 5203  ax-pow 5259  ax-pr 5323  ax-un 7454  ax-inf2 9097
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1083  df-3an 1084  df-tru 1539  df-ex 1780  df-nf 1784  df-sb 2069  df-mo 2621  df-eu 2653  df-clab 2799  df-cleq 2813  df-clel 2892  df-nfc 2962  df-ne 3016  df-nel 3123  df-ral 3142  df-rex 3143  df-reu 3144  df-rab 3146  df-v 3493  df-sbc 3769  df-csb 3877  df-dif 3932  df-un 3934  df-in 3936  df-ss 3945  df-pss 3947  df-nul 4285  df-if 4461  df-pw 4534  df-sn 4561  df-pr 4563  df-tp 4565  df-op 4567  df-uni 4832  df-iun 4914  df-br 5060  df-opab 5122  df-mpt 5140  df-tr 5166  df-id 5453  df-eprel 5458  df-po 5467  df-so 5468  df-fr 5507  df-we 5509  df-xp 5554  df-rel 5555  df-cnv 5556  df-co 5557  df-dm 5558  df-rn 5559  df-res 5560  df-ima 5561  df-pred 6141  df-ord 6187  df-on 6188  df-lim 6189  df-suc 6190  df-iota 6307  df-fun 6350  df-fn 6351  df-f 6352  df-f1 6353  df-fo 6354  df-f1o 6355  df-fv 6356  df-ov 7152  df-oprab 7153  df-mpo 7154  df-om 7574  df-1st 7682  df-2nd 7683  df-wrecs 7940  df-recs 8001  df-rdg 8039  df-1o 8095  df-map 8401  df-goel 32608  df-goal 32610  df-sat 32611  df-fmla 32613
This theorem is referenced by:  satefvfmla1  32693
  Copyright terms: Public domain W3C validator