Users' Mathboxes Mathbox for Mario Carneiro < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  satfv1fvfmla1 Structured version   Visualization version   GIF version

Theorem satfv1fvfmla1 32691
Description: The value of the satisfaction predicate at two Godel-sets of membership combined with a Godel-set for NAND. (Contributed by AV, 17-Nov-2023.)
Hypothesis
Ref Expression
satfv1fvfmla1.x 𝑋 = ((𝐼𝑔𝐽)⊼𝑔(𝐾𝑔𝐿))
Assertion
Ref Expression
satfv1fvfmla1 (((𝑀𝑉𝐸𝑊) ∧ (𝐼 ∈ ω ∧ 𝐽 ∈ ω) ∧ (𝐾 ∈ ω ∧ 𝐿 ∈ ω)) → (((𝑀 Sat 𝐸)‘1o)‘𝑋) = {𝑎 ∈ (𝑀m ω) ∣ (¬ (𝑎𝐼)𝐸(𝑎𝐽) ∨ ¬ (𝑎𝐾)𝐸(𝑎𝐿))})
Distinct variable groups:   𝐸,𝑎   𝐼,𝑎   𝐽,𝑎   𝐾,𝑎   𝐿,𝑎   𝑀,𝑎
Allowed substitution hints:   𝑉(𝑎)   𝑊(𝑎)   𝑋(𝑎)

Proof of Theorem satfv1fvfmla1
Dummy variables 𝑖 𝑗 𝑘 𝑛 𝑥 𝑙 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpl 485 . . . . 5 ((𝑀𝑉𝐸𝑊) → 𝑀𝑉)
2 simpr 487 . . . . 5 ((𝑀𝑉𝐸𝑊) → 𝐸𝑊)
3 1onn 8258 . . . . . 6 1o ∈ ω
43a1i 11 . . . . 5 ((𝑀𝑉𝐸𝑊) → 1o ∈ ω)
51, 2, 43jca 1123 . . . 4 ((𝑀𝑉𝐸𝑊) → (𝑀𝑉𝐸𝑊 ∧ 1o ∈ ω))
653ad2ant1 1128 . . 3 (((𝑀𝑉𝐸𝑊) ∧ (𝐼 ∈ ω ∧ 𝐽 ∈ ω) ∧ (𝐾 ∈ ω ∧ 𝐿 ∈ ω)) → (𝑀𝑉𝐸𝑊 ∧ 1o ∈ ω))
7 satffun 32677 . . 3 ((𝑀𝑉𝐸𝑊 ∧ 1o ∈ ω) → Fun ((𝑀 Sat 𝐸)‘1o))
86, 7syl 17 . 2 (((𝑀𝑉𝐸𝑊) ∧ (𝐼 ∈ ω ∧ 𝐽 ∈ ω) ∧ (𝐾 ∈ ω ∧ 𝐿 ∈ ω)) → Fun ((𝑀 Sat 𝐸)‘1o))
9 simp2l 1194 . . . . . . 7 (((𝑀𝑉𝐸𝑊) ∧ (𝐼 ∈ ω ∧ 𝐽 ∈ ω) ∧ (𝐾 ∈ ω ∧ 𝐿 ∈ ω)) → 𝐼 ∈ ω)
10 simp2r 1195 . . . . . . 7 (((𝑀𝑉𝐸𝑊) ∧ (𝐼 ∈ ω ∧ 𝐽 ∈ ω) ∧ (𝐾 ∈ ω ∧ 𝐿 ∈ ω)) → 𝐽 ∈ ω)
11 simp3l 1196 . . . . . . . . 9 (((𝑀𝑉𝐸𝑊) ∧ (𝐼 ∈ ω ∧ 𝐽 ∈ ω) ∧ (𝐾 ∈ ω ∧ 𝐿 ∈ ω)) → 𝐾 ∈ ω)
12 simp3r 1197 . . . . . . . . 9 (((𝑀𝑉𝐸𝑊) ∧ (𝐼 ∈ ω ∧ 𝐽 ∈ ω) ∧ (𝐾 ∈ ω ∧ 𝐿 ∈ ω)) → 𝐿 ∈ ω)
13 satfv1fvfmla1.x . . . . . . . . . . 11 𝑋 = ((𝐼𝑔𝐽)⊼𝑔(𝐾𝑔𝐿))
14 eqid 2820 . . . . . . . . . . 11 {𝑎 ∈ (𝑀m ω) ∣ (¬ (𝑎𝐼)𝐸(𝑎𝐽) ∨ ¬ (𝑎𝐾)𝐸(𝑎𝐿))} = {𝑎 ∈ (𝑀m ω) ∣ (¬ (𝑎𝐼)𝐸(𝑎𝐽) ∨ ¬ (𝑎𝐾)𝐸(𝑎𝐿))}
1513, 14pm3.2i 473 . . . . . . . . . 10 (𝑋 = ((𝐼𝑔𝐽)⊼𝑔(𝐾𝑔𝐿)) ∧ {𝑎 ∈ (𝑀m ω) ∣ (¬ (𝑎𝐼)𝐸(𝑎𝐽) ∨ ¬ (𝑎𝐾)𝐸(𝑎𝐿))} = {𝑎 ∈ (𝑀m ω) ∣ (¬ (𝑎𝐼)𝐸(𝑎𝐽) ∨ ¬ (𝑎𝐾)𝐸(𝑎𝐿))})
1615a1i 11 . . . . . . . . 9 (((𝑀𝑉𝐸𝑊) ∧ (𝐼 ∈ ω ∧ 𝐽 ∈ ω) ∧ (𝐾 ∈ ω ∧ 𝐿 ∈ ω)) → (𝑋 = ((𝐼𝑔𝐽)⊼𝑔(𝐾𝑔𝐿)) ∧ {𝑎 ∈ (𝑀m ω) ∣ (¬ (𝑎𝐼)𝐸(𝑎𝐽) ∨ ¬ (𝑎𝐾)𝐸(𝑎𝐿))} = {𝑎 ∈ (𝑀m ω) ∣ (¬ (𝑎𝐼)𝐸(𝑎𝐽) ∨ ¬ (𝑎𝐾)𝐸(𝑎𝐿))}))
17 oveq1 7156 . . . . . . . . . . . . 13 (𝑘 = 𝐾 → (𝑘𝑔𝑙) = (𝐾𝑔𝑙))
1817oveq2d 7165 . . . . . . . . . . . 12 (𝑘 = 𝐾 → ((𝐼𝑔𝐽)⊼𝑔(𝑘𝑔𝑙)) = ((𝐼𝑔𝐽)⊼𝑔(𝐾𝑔𝑙)))
1918eqeq2d 2831 . . . . . . . . . . 11 (𝑘 = 𝐾 → (𝑋 = ((𝐼𝑔𝐽)⊼𝑔(𝑘𝑔𝑙)) ↔ 𝑋 = ((𝐼𝑔𝐽)⊼𝑔(𝐾𝑔𝑙))))
20 fveq2 6663 . . . . . . . . . . . . . . . 16 (𝑘 = 𝐾 → (𝑎𝑘) = (𝑎𝐾))
2120breq1d 5069 . . . . . . . . . . . . . . 15 (𝑘 = 𝐾 → ((𝑎𝑘)𝐸(𝑎𝑙) ↔ (𝑎𝐾)𝐸(𝑎𝑙)))
2221notbid 320 . . . . . . . . . . . . . 14 (𝑘 = 𝐾 → (¬ (𝑎𝑘)𝐸(𝑎𝑙) ↔ ¬ (𝑎𝐾)𝐸(𝑎𝑙)))
2322orbi2d 912 . . . . . . . . . . . . 13 (𝑘 = 𝐾 → ((¬ (𝑎𝐼)𝐸(𝑎𝐽) ∨ ¬ (𝑎𝑘)𝐸(𝑎𝑙)) ↔ (¬ (𝑎𝐼)𝐸(𝑎𝐽) ∨ ¬ (𝑎𝐾)𝐸(𝑎𝑙))))
2423rabbidv 3477 . . . . . . . . . . . 12 (𝑘 = 𝐾 → {𝑎 ∈ (𝑀m ω) ∣ (¬ (𝑎𝐼)𝐸(𝑎𝐽) ∨ ¬ (𝑎𝑘)𝐸(𝑎𝑙))} = {𝑎 ∈ (𝑀m ω) ∣ (¬ (𝑎𝐼)𝐸(𝑎𝐽) ∨ ¬ (𝑎𝐾)𝐸(𝑎𝑙))})
2524eqeq2d 2831 . . . . . . . . . . 11 (𝑘 = 𝐾 → ({𝑎 ∈ (𝑀m ω) ∣ (¬ (𝑎𝐼)𝐸(𝑎𝐽) ∨ ¬ (𝑎𝐾)𝐸(𝑎𝐿))} = {𝑎 ∈ (𝑀m ω) ∣ (¬ (𝑎𝐼)𝐸(𝑎𝐽) ∨ ¬ (𝑎𝑘)𝐸(𝑎𝑙))} ↔ {𝑎 ∈ (𝑀m ω) ∣ (¬ (𝑎𝐼)𝐸(𝑎𝐽) ∨ ¬ (𝑎𝐾)𝐸(𝑎𝐿))} = {𝑎 ∈ (𝑀m ω) ∣ (¬ (𝑎𝐼)𝐸(𝑎𝐽) ∨ ¬ (𝑎𝐾)𝐸(𝑎𝑙))}))
2619, 25anbi12d 632 . . . . . . . . . 10 (𝑘 = 𝐾 → ((𝑋 = ((𝐼𝑔𝐽)⊼𝑔(𝑘𝑔𝑙)) ∧ {𝑎 ∈ (𝑀m ω) ∣ (¬ (𝑎𝐼)𝐸(𝑎𝐽) ∨ ¬ (𝑎𝐾)𝐸(𝑎𝐿))} = {𝑎 ∈ (𝑀m ω) ∣ (¬ (𝑎𝐼)𝐸(𝑎𝐽) ∨ ¬ (𝑎𝑘)𝐸(𝑎𝑙))}) ↔ (𝑋 = ((𝐼𝑔𝐽)⊼𝑔(𝐾𝑔𝑙)) ∧ {𝑎 ∈ (𝑀m ω) ∣ (¬ (𝑎𝐼)𝐸(𝑎𝐽) ∨ ¬ (𝑎𝐾)𝐸(𝑎𝐿))} = {𝑎 ∈ (𝑀m ω) ∣ (¬ (𝑎𝐼)𝐸(𝑎𝐽) ∨ ¬ (𝑎𝐾)𝐸(𝑎𝑙))})))
27 oveq2 7157 . . . . . . . . . . . . 13 (𝑙 = 𝐿 → (𝐾𝑔𝑙) = (𝐾𝑔𝐿))
2827oveq2d 7165 . . . . . . . . . . . 12 (𝑙 = 𝐿 → ((𝐼𝑔𝐽)⊼𝑔(𝐾𝑔𝑙)) = ((𝐼𝑔𝐽)⊼𝑔(𝐾𝑔𝐿)))
2928eqeq2d 2831 . . . . . . . . . . 11 (𝑙 = 𝐿 → (𝑋 = ((𝐼𝑔𝐽)⊼𝑔(𝐾𝑔𝑙)) ↔ 𝑋 = ((𝐼𝑔𝐽)⊼𝑔(𝐾𝑔𝐿))))
30 fveq2 6663 . . . . . . . . . . . . . . . 16 (𝑙 = 𝐿 → (𝑎𝑙) = (𝑎𝐿))
3130breq2d 5071 . . . . . . . . . . . . . . 15 (𝑙 = 𝐿 → ((𝑎𝐾)𝐸(𝑎𝑙) ↔ (𝑎𝐾)𝐸(𝑎𝐿)))
3231notbid 320 . . . . . . . . . . . . . 14 (𝑙 = 𝐿 → (¬ (𝑎𝐾)𝐸(𝑎𝑙) ↔ ¬ (𝑎𝐾)𝐸(𝑎𝐿)))
3332orbi2d 912 . . . . . . . . . . . . 13 (𝑙 = 𝐿 → ((¬ (𝑎𝐼)𝐸(𝑎𝐽) ∨ ¬ (𝑎𝐾)𝐸(𝑎𝑙)) ↔ (¬ (𝑎𝐼)𝐸(𝑎𝐽) ∨ ¬ (𝑎𝐾)𝐸(𝑎𝐿))))
3433rabbidv 3477 . . . . . . . . . . . 12 (𝑙 = 𝐿 → {𝑎 ∈ (𝑀m ω) ∣ (¬ (𝑎𝐼)𝐸(𝑎𝐽) ∨ ¬ (𝑎𝐾)𝐸(𝑎𝑙))} = {𝑎 ∈ (𝑀m ω) ∣ (¬ (𝑎𝐼)𝐸(𝑎𝐽) ∨ ¬ (𝑎𝐾)𝐸(𝑎𝐿))})
3534eqeq2d 2831 . . . . . . . . . . 11 (𝑙 = 𝐿 → ({𝑎 ∈ (𝑀m ω) ∣ (¬ (𝑎𝐼)𝐸(𝑎𝐽) ∨ ¬ (𝑎𝐾)𝐸(𝑎𝐿))} = {𝑎 ∈ (𝑀m ω) ∣ (¬ (𝑎𝐼)𝐸(𝑎𝐽) ∨ ¬ (𝑎𝐾)𝐸(𝑎𝑙))} ↔ {𝑎 ∈ (𝑀m ω) ∣ (¬ (𝑎𝐼)𝐸(𝑎𝐽) ∨ ¬ (𝑎𝐾)𝐸(𝑎𝐿))} = {𝑎 ∈ (𝑀m ω) ∣ (¬ (𝑎𝐼)𝐸(𝑎𝐽) ∨ ¬ (𝑎𝐾)𝐸(𝑎𝐿))}))
3629, 35anbi12d 632 . . . . . . . . . 10 (𝑙 = 𝐿 → ((𝑋 = ((𝐼𝑔𝐽)⊼𝑔(𝐾𝑔𝑙)) ∧ {𝑎 ∈ (𝑀m ω) ∣ (¬ (𝑎𝐼)𝐸(𝑎𝐽) ∨ ¬ (𝑎𝐾)𝐸(𝑎𝐿))} = {𝑎 ∈ (𝑀m ω) ∣ (¬ (𝑎𝐼)𝐸(𝑎𝐽) ∨ ¬ (𝑎𝐾)𝐸(𝑎𝑙))}) ↔ (𝑋 = ((𝐼𝑔𝐽)⊼𝑔(𝐾𝑔𝐿)) ∧ {𝑎 ∈ (𝑀m ω) ∣ (¬ (𝑎𝐼)𝐸(𝑎𝐽) ∨ ¬ (𝑎𝐾)𝐸(𝑎𝐿))} = {𝑎 ∈ (𝑀m ω) ∣ (¬ (𝑎𝐼)𝐸(𝑎𝐽) ∨ ¬ (𝑎𝐾)𝐸(𝑎𝐿))})))
3726, 36rspc2ev 3632 . . . . . . . . 9 ((𝐾 ∈ ω ∧ 𝐿 ∈ ω ∧ (𝑋 = ((𝐼𝑔𝐽)⊼𝑔(𝐾𝑔𝐿)) ∧ {𝑎 ∈ (𝑀m ω) ∣ (¬ (𝑎𝐼)𝐸(𝑎𝐽) ∨ ¬ (𝑎𝐾)𝐸(𝑎𝐿))} = {𝑎 ∈ (𝑀m ω) ∣ (¬ (𝑎𝐼)𝐸(𝑎𝐽) ∨ ¬ (𝑎𝐾)𝐸(𝑎𝐿))})) → ∃𝑘 ∈ ω ∃𝑙 ∈ ω (𝑋 = ((𝐼𝑔𝐽)⊼𝑔(𝑘𝑔𝑙)) ∧ {𝑎 ∈ (𝑀m ω) ∣ (¬ (𝑎𝐼)𝐸(𝑎𝐽) ∨ ¬ (𝑎𝐾)𝐸(𝑎𝐿))} = {𝑎 ∈ (𝑀m ω) ∣ (¬ (𝑎𝐼)𝐸(𝑎𝐽) ∨ ¬ (𝑎𝑘)𝐸(𝑎𝑙))}))
3811, 12, 16, 37syl3anc 1366 . . . . . . . 8 (((𝑀𝑉𝐸𝑊) ∧ (𝐼 ∈ ω ∧ 𝐽 ∈ ω) ∧ (𝐾 ∈ ω ∧ 𝐿 ∈ ω)) → ∃𝑘 ∈ ω ∃𝑙 ∈ ω (𝑋 = ((𝐼𝑔𝐽)⊼𝑔(𝑘𝑔𝑙)) ∧ {𝑎 ∈ (𝑀m ω) ∣ (¬ (𝑎𝐼)𝐸(𝑎𝐽) ∨ ¬ (𝑎𝐾)𝐸(𝑎𝐿))} = {𝑎 ∈ (𝑀m ω) ∣ (¬ (𝑎𝐼)𝐸(𝑎𝐽) ∨ ¬ (𝑎𝑘)𝐸(𝑎𝑙))}))
3938orcd 869 . . . . . . 7 (((𝑀𝑉𝐸𝑊) ∧ (𝐼 ∈ ω ∧ 𝐽 ∈ ω) ∧ (𝐾 ∈ ω ∧ 𝐿 ∈ ω)) → (∃𝑘 ∈ ω ∃𝑙 ∈ ω (𝑋 = ((𝐼𝑔𝐽)⊼𝑔(𝑘𝑔𝑙)) ∧ {𝑎 ∈ (𝑀m ω) ∣ (¬ (𝑎𝐼)𝐸(𝑎𝐽) ∨ ¬ (𝑎𝐾)𝐸(𝑎𝐿))} = {𝑎 ∈ (𝑀m ω) ∣ (¬ (𝑎𝐼)𝐸(𝑎𝐽) ∨ ¬ (𝑎𝑘)𝐸(𝑎𝑙))}) ∨ ∃𝑛 ∈ ω (𝑋 = ∀𝑔𝑛(𝐼𝑔𝐽) ∧ {𝑎 ∈ (𝑀m ω) ∣ (¬ (𝑎𝐼)𝐸(𝑎𝐽) ∨ ¬ (𝑎𝐾)𝐸(𝑎𝐿))} = {𝑎 ∈ (𝑀m ω) ∣ ∀𝑧𝑀 if-(𝐼 = 𝑛, if-(𝐽 = 𝑛, 𝑧𝐸𝑧, 𝑧𝐸(𝑎𝐽)), if-(𝐽 = 𝑛, (𝑎𝐼)𝐸𝑧, (𝑎𝐼)𝐸(𝑎𝐽)))})))
40 oveq1 7156 . . . . . . . . . . . . 13 (𝑖 = 𝐼 → (𝑖𝑔𝑗) = (𝐼𝑔𝑗))
4140oveq1d 7164 . . . . . . . . . . . 12 (𝑖 = 𝐼 → ((𝑖𝑔𝑗)⊼𝑔(𝑘𝑔𝑙)) = ((𝐼𝑔𝑗)⊼𝑔(𝑘𝑔𝑙)))
4241eqeq2d 2831 . . . . . . . . . . 11 (𝑖 = 𝐼 → (𝑋 = ((𝑖𝑔𝑗)⊼𝑔(𝑘𝑔𝑙)) ↔ 𝑋 = ((𝐼𝑔𝑗)⊼𝑔(𝑘𝑔𝑙))))
43 fveq2 6663 . . . . . . . . . . . . . . . 16 (𝑖 = 𝐼 → (𝑎𝑖) = (𝑎𝐼))
4443breq1d 5069 . . . . . . . . . . . . . . 15 (𝑖 = 𝐼 → ((𝑎𝑖)𝐸(𝑎𝑗) ↔ (𝑎𝐼)𝐸(𝑎𝑗)))
4544notbid 320 . . . . . . . . . . . . . 14 (𝑖 = 𝐼 → (¬ (𝑎𝑖)𝐸(𝑎𝑗) ↔ ¬ (𝑎𝐼)𝐸(𝑎𝑗)))
4645orbi1d 913 . . . . . . . . . . . . 13 (𝑖 = 𝐼 → ((¬ (𝑎𝑖)𝐸(𝑎𝑗) ∨ ¬ (𝑎𝑘)𝐸(𝑎𝑙)) ↔ (¬ (𝑎𝐼)𝐸(𝑎𝑗) ∨ ¬ (𝑎𝑘)𝐸(𝑎𝑙))))
4746rabbidv 3477 . . . . . . . . . . . 12 (𝑖 = 𝐼 → {𝑎 ∈ (𝑀m ω) ∣ (¬ (𝑎𝑖)𝐸(𝑎𝑗) ∨ ¬ (𝑎𝑘)𝐸(𝑎𝑙))} = {𝑎 ∈ (𝑀m ω) ∣ (¬ (𝑎𝐼)𝐸(𝑎𝑗) ∨ ¬ (𝑎𝑘)𝐸(𝑎𝑙))})
4847eqeq2d 2831 . . . . . . . . . . 11 (𝑖 = 𝐼 → ({𝑎 ∈ (𝑀m ω) ∣ (¬ (𝑎𝐼)𝐸(𝑎𝐽) ∨ ¬ (𝑎𝐾)𝐸(𝑎𝐿))} = {𝑎 ∈ (𝑀m ω) ∣ (¬ (𝑎𝑖)𝐸(𝑎𝑗) ∨ ¬ (𝑎𝑘)𝐸(𝑎𝑙))} ↔ {𝑎 ∈ (𝑀m ω) ∣ (¬ (𝑎𝐼)𝐸(𝑎𝐽) ∨ ¬ (𝑎𝐾)𝐸(𝑎𝐿))} = {𝑎 ∈ (𝑀m ω) ∣ (¬ (𝑎𝐼)𝐸(𝑎𝑗) ∨ ¬ (𝑎𝑘)𝐸(𝑎𝑙))}))
4942, 48anbi12d 632 . . . . . . . . . 10 (𝑖 = 𝐼 → ((𝑋 = ((𝑖𝑔𝑗)⊼𝑔(𝑘𝑔𝑙)) ∧ {𝑎 ∈ (𝑀m ω) ∣ (¬ (𝑎𝐼)𝐸(𝑎𝐽) ∨ ¬ (𝑎𝐾)𝐸(𝑎𝐿))} = {𝑎 ∈ (𝑀m ω) ∣ (¬ (𝑎𝑖)𝐸(𝑎𝑗) ∨ ¬ (𝑎𝑘)𝐸(𝑎𝑙))}) ↔ (𝑋 = ((𝐼𝑔𝑗)⊼𝑔(𝑘𝑔𝑙)) ∧ {𝑎 ∈ (𝑀m ω) ∣ (¬ (𝑎𝐼)𝐸(𝑎𝐽) ∨ ¬ (𝑎𝐾)𝐸(𝑎𝐿))} = {𝑎 ∈ (𝑀m ω) ∣ (¬ (𝑎𝐼)𝐸(𝑎𝑗) ∨ ¬ (𝑎𝑘)𝐸(𝑎𝑙))})))
50492rexbidv 3299 . . . . . . . . 9 (𝑖 = 𝐼 → (∃𝑘 ∈ ω ∃𝑙 ∈ ω (𝑋 = ((𝑖𝑔𝑗)⊼𝑔(𝑘𝑔𝑙)) ∧ {𝑎 ∈ (𝑀m ω) ∣ (¬ (𝑎𝐼)𝐸(𝑎𝐽) ∨ ¬ (𝑎𝐾)𝐸(𝑎𝐿))} = {𝑎 ∈ (𝑀m ω) ∣ (¬ (𝑎𝑖)𝐸(𝑎𝑗) ∨ ¬ (𝑎𝑘)𝐸(𝑎𝑙))}) ↔ ∃𝑘 ∈ ω ∃𝑙 ∈ ω (𝑋 = ((𝐼𝑔𝑗)⊼𝑔(𝑘𝑔𝑙)) ∧ {𝑎 ∈ (𝑀m ω) ∣ (¬ (𝑎𝐼)𝐸(𝑎𝐽) ∨ ¬ (𝑎𝐾)𝐸(𝑎𝐿))} = {𝑎 ∈ (𝑀m ω) ∣ (¬ (𝑎𝐼)𝐸(𝑎𝑗) ∨ ¬ (𝑎𝑘)𝐸(𝑎𝑙))})))
51 eqidd 2821 . . . . . . . . . . . . 13 (𝑖 = 𝐼𝑛 = 𝑛)
5251, 40goaleq12d 32619 . . . . . . . . . . . 12 (𝑖 = 𝐼 → ∀𝑔𝑛(𝑖𝑔𝑗) = ∀𝑔𝑛(𝐼𝑔𝑗))
5352eqeq2d 2831 . . . . . . . . . . 11 (𝑖 = 𝐼 → (𝑋 = ∀𝑔𝑛(𝑖𝑔𝑗) ↔ 𝑋 = ∀𝑔𝑛(𝐼𝑔𝑗)))
54 eqeq1 2824 . . . . . . . . . . . . . . 15 (𝑖 = 𝐼 → (𝑖 = 𝑛𝐼 = 𝑛))
55 biidd 264 . . . . . . . . . . . . . . 15 (𝑖 = 𝐼 → (if-(𝑗 = 𝑛, 𝑧𝐸𝑧, 𝑧𝐸(𝑎𝑗)) ↔ if-(𝑗 = 𝑛, 𝑧𝐸𝑧, 𝑧𝐸(𝑎𝑗))))
5643breq1d 5069 . . . . . . . . . . . . . . . 16 (𝑖 = 𝐼 → ((𝑎𝑖)𝐸𝑧 ↔ (𝑎𝐼)𝐸𝑧))
5756, 44ifpbi23d 1075 . . . . . . . . . . . . . . 15 (𝑖 = 𝐼 → (if-(𝑗 = 𝑛, (𝑎𝑖)𝐸𝑧, (𝑎𝑖)𝐸(𝑎𝑗)) ↔ if-(𝑗 = 𝑛, (𝑎𝐼)𝐸𝑧, (𝑎𝐼)𝐸(𝑎𝑗))))
5854, 55, 57ifpbi123d 1073 . . . . . . . . . . . . . 14 (𝑖 = 𝐼 → (if-(𝑖 = 𝑛, if-(𝑗 = 𝑛, 𝑧𝐸𝑧, 𝑧𝐸(𝑎𝑗)), if-(𝑗 = 𝑛, (𝑎𝑖)𝐸𝑧, (𝑎𝑖)𝐸(𝑎𝑗))) ↔ if-(𝐼 = 𝑛, if-(𝑗 = 𝑛, 𝑧𝐸𝑧, 𝑧𝐸(𝑎𝑗)), if-(𝑗 = 𝑛, (𝑎𝐼)𝐸𝑧, (𝑎𝐼)𝐸(𝑎𝑗)))))
5958ralbidv 3196 . . . . . . . . . . . . 13 (𝑖 = 𝐼 → (∀𝑧𝑀 if-(𝑖 = 𝑛, if-(𝑗 = 𝑛, 𝑧𝐸𝑧, 𝑧𝐸(𝑎𝑗)), if-(𝑗 = 𝑛, (𝑎𝑖)𝐸𝑧, (𝑎𝑖)𝐸(𝑎𝑗))) ↔ ∀𝑧𝑀 if-(𝐼 = 𝑛, if-(𝑗 = 𝑛, 𝑧𝐸𝑧, 𝑧𝐸(𝑎𝑗)), if-(𝑗 = 𝑛, (𝑎𝐼)𝐸𝑧, (𝑎𝐼)𝐸(𝑎𝑗)))))
6059rabbidv 3477 . . . . . . . . . . . 12 (𝑖 = 𝐼 → {𝑎 ∈ (𝑀m ω) ∣ ∀𝑧𝑀 if-(𝑖 = 𝑛, if-(𝑗 = 𝑛, 𝑧𝐸𝑧, 𝑧𝐸(𝑎𝑗)), if-(𝑗 = 𝑛, (𝑎𝑖)𝐸𝑧, (𝑎𝑖)𝐸(𝑎𝑗)))} = {𝑎 ∈ (𝑀m ω) ∣ ∀𝑧𝑀 if-(𝐼 = 𝑛, if-(𝑗 = 𝑛, 𝑧𝐸𝑧, 𝑧𝐸(𝑎𝑗)), if-(𝑗 = 𝑛, (𝑎𝐼)𝐸𝑧, (𝑎𝐼)𝐸(𝑎𝑗)))})
6160eqeq2d 2831 . . . . . . . . . . 11 (𝑖 = 𝐼 → ({𝑎 ∈ (𝑀m ω) ∣ (¬ (𝑎𝐼)𝐸(𝑎𝐽) ∨ ¬ (𝑎𝐾)𝐸(𝑎𝐿))} = {𝑎 ∈ (𝑀m ω) ∣ ∀𝑧𝑀 if-(𝑖 = 𝑛, if-(𝑗 = 𝑛, 𝑧𝐸𝑧, 𝑧𝐸(𝑎𝑗)), if-(𝑗 = 𝑛, (𝑎𝑖)𝐸𝑧, (𝑎𝑖)𝐸(𝑎𝑗)))} ↔ {𝑎 ∈ (𝑀m ω) ∣ (¬ (𝑎𝐼)𝐸(𝑎𝐽) ∨ ¬ (𝑎𝐾)𝐸(𝑎𝐿))} = {𝑎 ∈ (𝑀m ω) ∣ ∀𝑧𝑀 if-(𝐼 = 𝑛, if-(𝑗 = 𝑛, 𝑧𝐸𝑧, 𝑧𝐸(𝑎𝑗)), if-(𝑗 = 𝑛, (𝑎𝐼)𝐸𝑧, (𝑎𝐼)𝐸(𝑎𝑗)))}))
6253, 61anbi12d 632 . . . . . . . . . 10 (𝑖 = 𝐼 → ((𝑋 = ∀𝑔𝑛(𝑖𝑔𝑗) ∧ {𝑎 ∈ (𝑀m ω) ∣ (¬ (𝑎𝐼)𝐸(𝑎𝐽) ∨ ¬ (𝑎𝐾)𝐸(𝑎𝐿))} = {𝑎 ∈ (𝑀m ω) ∣ ∀𝑧𝑀 if-(𝑖 = 𝑛, if-(𝑗 = 𝑛, 𝑧𝐸𝑧, 𝑧𝐸(𝑎𝑗)), if-(𝑗 = 𝑛, (𝑎𝑖)𝐸𝑧, (𝑎𝑖)𝐸(𝑎𝑗)))}) ↔ (𝑋 = ∀𝑔𝑛(𝐼𝑔𝑗) ∧ {𝑎 ∈ (𝑀m ω) ∣ (¬ (𝑎𝐼)𝐸(𝑎𝐽) ∨ ¬ (𝑎𝐾)𝐸(𝑎𝐿))} = {𝑎 ∈ (𝑀m ω) ∣ ∀𝑧𝑀 if-(𝐼 = 𝑛, if-(𝑗 = 𝑛, 𝑧𝐸𝑧, 𝑧𝐸(𝑎𝑗)), if-(𝑗 = 𝑛, (𝑎𝐼)𝐸𝑧, (𝑎𝐼)𝐸(𝑎𝑗)))})))
6362rexbidv 3296 . . . . . . . . 9 (𝑖 = 𝐼 → (∃𝑛 ∈ ω (𝑋 = ∀𝑔𝑛(𝑖𝑔𝑗) ∧ {𝑎 ∈ (𝑀m ω) ∣ (¬ (𝑎𝐼)𝐸(𝑎𝐽) ∨ ¬ (𝑎𝐾)𝐸(𝑎𝐿))} = {𝑎 ∈ (𝑀m ω) ∣ ∀𝑧𝑀 if-(𝑖 = 𝑛, if-(𝑗 = 𝑛, 𝑧𝐸𝑧, 𝑧𝐸(𝑎𝑗)), if-(𝑗 = 𝑛, (𝑎𝑖)𝐸𝑧, (𝑎𝑖)𝐸(𝑎𝑗)))}) ↔ ∃𝑛 ∈ ω (𝑋 = ∀𝑔𝑛(𝐼𝑔𝑗) ∧ {𝑎 ∈ (𝑀m ω) ∣ (¬ (𝑎𝐼)𝐸(𝑎𝐽) ∨ ¬ (𝑎𝐾)𝐸(𝑎𝐿))} = {𝑎 ∈ (𝑀m ω) ∣ ∀𝑧𝑀 if-(𝐼 = 𝑛, if-(𝑗 = 𝑛, 𝑧𝐸𝑧, 𝑧𝐸(𝑎𝑗)), if-(𝑗 = 𝑛, (𝑎𝐼)𝐸𝑧, (𝑎𝐼)𝐸(𝑎𝑗)))})))
6450, 63orbi12d 915 . . . . . . . 8 (𝑖 = 𝐼 → ((∃𝑘 ∈ ω ∃𝑙 ∈ ω (𝑋 = ((𝑖𝑔𝑗)⊼𝑔(𝑘𝑔𝑙)) ∧ {𝑎 ∈ (𝑀m ω) ∣ (¬ (𝑎𝐼)𝐸(𝑎𝐽) ∨ ¬ (𝑎𝐾)𝐸(𝑎𝐿))} = {𝑎 ∈ (𝑀m ω) ∣ (¬ (𝑎𝑖)𝐸(𝑎𝑗) ∨ ¬ (𝑎𝑘)𝐸(𝑎𝑙))}) ∨ ∃𝑛 ∈ ω (𝑋 = ∀𝑔𝑛(𝑖𝑔𝑗) ∧ {𝑎 ∈ (𝑀m ω) ∣ (¬ (𝑎𝐼)𝐸(𝑎𝐽) ∨ ¬ (𝑎𝐾)𝐸(𝑎𝐿))} = {𝑎 ∈ (𝑀m ω) ∣ ∀𝑧𝑀 if-(𝑖 = 𝑛, if-(𝑗 = 𝑛, 𝑧𝐸𝑧, 𝑧𝐸(𝑎𝑗)), if-(𝑗 = 𝑛, (𝑎𝑖)𝐸𝑧, (𝑎𝑖)𝐸(𝑎𝑗)))})) ↔ (∃𝑘 ∈ ω ∃𝑙 ∈ ω (𝑋 = ((𝐼𝑔𝑗)⊼𝑔(𝑘𝑔𝑙)) ∧ {𝑎 ∈ (𝑀m ω) ∣ (¬ (𝑎𝐼)𝐸(𝑎𝐽) ∨ ¬ (𝑎𝐾)𝐸(𝑎𝐿))} = {𝑎 ∈ (𝑀m ω) ∣ (¬ (𝑎𝐼)𝐸(𝑎𝑗) ∨ ¬ (𝑎𝑘)𝐸(𝑎𝑙))}) ∨ ∃𝑛 ∈ ω (𝑋 = ∀𝑔𝑛(𝐼𝑔𝑗) ∧ {𝑎 ∈ (𝑀m ω) ∣ (¬ (𝑎𝐼)𝐸(𝑎𝐽) ∨ ¬ (𝑎𝐾)𝐸(𝑎𝐿))} = {𝑎 ∈ (𝑀m ω) ∣ ∀𝑧𝑀 if-(𝐼 = 𝑛, if-(𝑗 = 𝑛, 𝑧𝐸𝑧, 𝑧𝐸(𝑎𝑗)), if-(𝑗 = 𝑛, (𝑎𝐼)𝐸𝑧, (𝑎𝐼)𝐸(𝑎𝑗)))}))))
65 oveq2 7157 . . . . . . . . . . . . 13 (𝑗 = 𝐽 → (𝐼𝑔𝑗) = (𝐼𝑔𝐽))
6665oveq1d 7164 . . . . . . . . . . . 12 (𝑗 = 𝐽 → ((𝐼𝑔𝑗)⊼𝑔(𝑘𝑔𝑙)) = ((𝐼𝑔𝐽)⊼𝑔(𝑘𝑔𝑙)))
6766eqeq2d 2831 . . . . . . . . . . 11 (𝑗 = 𝐽 → (𝑋 = ((𝐼𝑔𝑗)⊼𝑔(𝑘𝑔𝑙)) ↔ 𝑋 = ((𝐼𝑔𝐽)⊼𝑔(𝑘𝑔𝑙))))
68 fveq2 6663 . . . . . . . . . . . . . . . 16 (𝑗 = 𝐽 → (𝑎𝑗) = (𝑎𝐽))
6968breq2d 5071 . . . . . . . . . . . . . . 15 (𝑗 = 𝐽 → ((𝑎𝐼)𝐸(𝑎𝑗) ↔ (𝑎𝐼)𝐸(𝑎𝐽)))
7069notbid 320 . . . . . . . . . . . . . 14 (𝑗 = 𝐽 → (¬ (𝑎𝐼)𝐸(𝑎𝑗) ↔ ¬ (𝑎𝐼)𝐸(𝑎𝐽)))
7170orbi1d 913 . . . . . . . . . . . . 13 (𝑗 = 𝐽 → ((¬ (𝑎𝐼)𝐸(𝑎𝑗) ∨ ¬ (𝑎𝑘)𝐸(𝑎𝑙)) ↔ (¬ (𝑎𝐼)𝐸(𝑎𝐽) ∨ ¬ (𝑎𝑘)𝐸(𝑎𝑙))))
7271rabbidv 3477 . . . . . . . . . . . 12 (𝑗 = 𝐽 → {𝑎 ∈ (𝑀m ω) ∣ (¬ (𝑎𝐼)𝐸(𝑎𝑗) ∨ ¬ (𝑎𝑘)𝐸(𝑎𝑙))} = {𝑎 ∈ (𝑀m ω) ∣ (¬ (𝑎𝐼)𝐸(𝑎𝐽) ∨ ¬ (𝑎𝑘)𝐸(𝑎𝑙))})
7372eqeq2d 2831 . . . . . . . . . . 11 (𝑗 = 𝐽 → ({𝑎 ∈ (𝑀m ω) ∣ (¬ (𝑎𝐼)𝐸(𝑎𝐽) ∨ ¬ (𝑎𝐾)𝐸(𝑎𝐿))} = {𝑎 ∈ (𝑀m ω) ∣ (¬ (𝑎𝐼)𝐸(𝑎𝑗) ∨ ¬ (𝑎𝑘)𝐸(𝑎𝑙))} ↔ {𝑎 ∈ (𝑀m ω) ∣ (¬ (𝑎𝐼)𝐸(𝑎𝐽) ∨ ¬ (𝑎𝐾)𝐸(𝑎𝐿))} = {𝑎 ∈ (𝑀m ω) ∣ (¬ (𝑎𝐼)𝐸(𝑎𝐽) ∨ ¬ (𝑎𝑘)𝐸(𝑎𝑙))}))
7467, 73anbi12d 632 . . . . . . . . . 10 (𝑗 = 𝐽 → ((𝑋 = ((𝐼𝑔𝑗)⊼𝑔(𝑘𝑔𝑙)) ∧ {𝑎 ∈ (𝑀m ω) ∣ (¬ (𝑎𝐼)𝐸(𝑎𝐽) ∨ ¬ (𝑎𝐾)𝐸(𝑎𝐿))} = {𝑎 ∈ (𝑀m ω) ∣ (¬ (𝑎𝐼)𝐸(𝑎𝑗) ∨ ¬ (𝑎𝑘)𝐸(𝑎𝑙))}) ↔ (𝑋 = ((𝐼𝑔𝐽)⊼𝑔(𝑘𝑔𝑙)) ∧ {𝑎 ∈ (𝑀m ω) ∣ (¬ (𝑎𝐼)𝐸(𝑎𝐽) ∨ ¬ (𝑎𝐾)𝐸(𝑎𝐿))} = {𝑎 ∈ (𝑀m ω) ∣ (¬ (𝑎𝐼)𝐸(𝑎𝐽) ∨ ¬ (𝑎𝑘)𝐸(𝑎𝑙))})))
75742rexbidv 3299 . . . . . . . . 9 (𝑗 = 𝐽 → (∃𝑘 ∈ ω ∃𝑙 ∈ ω (𝑋 = ((𝐼𝑔𝑗)⊼𝑔(𝑘𝑔𝑙)) ∧ {𝑎 ∈ (𝑀m ω) ∣ (¬ (𝑎𝐼)𝐸(𝑎𝐽) ∨ ¬ (𝑎𝐾)𝐸(𝑎𝐿))} = {𝑎 ∈ (𝑀m ω) ∣ (¬ (𝑎𝐼)𝐸(𝑎𝑗) ∨ ¬ (𝑎𝑘)𝐸(𝑎𝑙))}) ↔ ∃𝑘 ∈ ω ∃𝑙 ∈ ω (𝑋 = ((𝐼𝑔𝐽)⊼𝑔(𝑘𝑔𝑙)) ∧ {𝑎 ∈ (𝑀m ω) ∣ (¬ (𝑎𝐼)𝐸(𝑎𝐽) ∨ ¬ (𝑎𝐾)𝐸(𝑎𝐿))} = {𝑎 ∈ (𝑀m ω) ∣ (¬ (𝑎𝐼)𝐸(𝑎𝐽) ∨ ¬ (𝑎𝑘)𝐸(𝑎𝑙))})))
76 eqidd 2821 . . . . . . . . . . . . 13 (𝑗 = 𝐽𝑛 = 𝑛)
7776, 65goaleq12d 32619 . . . . . . . . . . . 12 (𝑗 = 𝐽 → ∀𝑔𝑛(𝐼𝑔𝑗) = ∀𝑔𝑛(𝐼𝑔𝐽))
7877eqeq2d 2831 . . . . . . . . . . 11 (𝑗 = 𝐽 → (𝑋 = ∀𝑔𝑛(𝐼𝑔𝑗) ↔ 𝑋 = ∀𝑔𝑛(𝐼𝑔𝐽)))
79 eqeq1 2824 . . . . . . . . . . . . . . . 16 (𝑗 = 𝐽 → (𝑗 = 𝑛𝐽 = 𝑛))
80 biidd 264 . . . . . . . . . . . . . . . 16 (𝑗 = 𝐽 → (𝑧𝐸𝑧𝑧𝐸𝑧))
8168breq2d 5071 . . . . . . . . . . . . . . . 16 (𝑗 = 𝐽 → (𝑧𝐸(𝑎𝑗) ↔ 𝑧𝐸(𝑎𝐽)))
8279, 80, 81ifpbi123d 1073 . . . . . . . . . . . . . . 15 (𝑗 = 𝐽 → (if-(𝑗 = 𝑛, 𝑧𝐸𝑧, 𝑧𝐸(𝑎𝑗)) ↔ if-(𝐽 = 𝑛, 𝑧𝐸𝑧, 𝑧𝐸(𝑎𝐽))))
83 biidd 264 . . . . . . . . . . . . . . . 16 (𝑗 = 𝐽 → ((𝑎𝐼)𝐸𝑧 ↔ (𝑎𝐼)𝐸𝑧))
8479, 83, 69ifpbi123d 1073 . . . . . . . . . . . . . . 15 (𝑗 = 𝐽 → (if-(𝑗 = 𝑛, (𝑎𝐼)𝐸𝑧, (𝑎𝐼)𝐸(𝑎𝑗)) ↔ if-(𝐽 = 𝑛, (𝑎𝐼)𝐸𝑧, (𝑎𝐼)𝐸(𝑎𝐽))))
8582, 84ifpbi23d 1075 . . . . . . . . . . . . . 14 (𝑗 = 𝐽 → (if-(𝐼 = 𝑛, if-(𝑗 = 𝑛, 𝑧𝐸𝑧, 𝑧𝐸(𝑎𝑗)), if-(𝑗 = 𝑛, (𝑎𝐼)𝐸𝑧, (𝑎𝐼)𝐸(𝑎𝑗))) ↔ if-(𝐼 = 𝑛, if-(𝐽 = 𝑛, 𝑧𝐸𝑧, 𝑧𝐸(𝑎𝐽)), if-(𝐽 = 𝑛, (𝑎𝐼)𝐸𝑧, (𝑎𝐼)𝐸(𝑎𝐽)))))
8685ralbidv 3196 . . . . . . . . . . . . 13 (𝑗 = 𝐽 → (∀𝑧𝑀 if-(𝐼 = 𝑛, if-(𝑗 = 𝑛, 𝑧𝐸𝑧, 𝑧𝐸(𝑎𝑗)), if-(𝑗 = 𝑛, (𝑎𝐼)𝐸𝑧, (𝑎𝐼)𝐸(𝑎𝑗))) ↔ ∀𝑧𝑀 if-(𝐼 = 𝑛, if-(𝐽 = 𝑛, 𝑧𝐸𝑧, 𝑧𝐸(𝑎𝐽)), if-(𝐽 = 𝑛, (𝑎𝐼)𝐸𝑧, (𝑎𝐼)𝐸(𝑎𝐽)))))
8786rabbidv 3477 . . . . . . . . . . . 12 (𝑗 = 𝐽 → {𝑎 ∈ (𝑀m ω) ∣ ∀𝑧𝑀 if-(𝐼 = 𝑛, if-(𝑗 = 𝑛, 𝑧𝐸𝑧, 𝑧𝐸(𝑎𝑗)), if-(𝑗 = 𝑛, (𝑎𝐼)𝐸𝑧, (𝑎𝐼)𝐸(𝑎𝑗)))} = {𝑎 ∈ (𝑀m ω) ∣ ∀𝑧𝑀 if-(𝐼 = 𝑛, if-(𝐽 = 𝑛, 𝑧𝐸𝑧, 𝑧𝐸(𝑎𝐽)), if-(𝐽 = 𝑛, (𝑎𝐼)𝐸𝑧, (𝑎𝐼)𝐸(𝑎𝐽)))})
8887eqeq2d 2831 . . . . . . . . . . 11 (𝑗 = 𝐽 → ({𝑎 ∈ (𝑀m ω) ∣ (¬ (𝑎𝐼)𝐸(𝑎𝐽) ∨ ¬ (𝑎𝐾)𝐸(𝑎𝐿))} = {𝑎 ∈ (𝑀m ω) ∣ ∀𝑧𝑀 if-(𝐼 = 𝑛, if-(𝑗 = 𝑛, 𝑧𝐸𝑧, 𝑧𝐸(𝑎𝑗)), if-(𝑗 = 𝑛, (𝑎𝐼)𝐸𝑧, (𝑎𝐼)𝐸(𝑎𝑗)))} ↔ {𝑎 ∈ (𝑀m ω) ∣ (¬ (𝑎𝐼)𝐸(𝑎𝐽) ∨ ¬ (𝑎𝐾)𝐸(𝑎𝐿))} = {𝑎 ∈ (𝑀m ω) ∣ ∀𝑧𝑀 if-(𝐼 = 𝑛, if-(𝐽 = 𝑛, 𝑧𝐸𝑧, 𝑧𝐸(𝑎𝐽)), if-(𝐽 = 𝑛, (𝑎𝐼)𝐸𝑧, (𝑎𝐼)𝐸(𝑎𝐽)))}))
8978, 88anbi12d 632 . . . . . . . . . 10 (𝑗 = 𝐽 → ((𝑋 = ∀𝑔𝑛(𝐼𝑔𝑗) ∧ {𝑎 ∈ (𝑀m ω) ∣ (¬ (𝑎𝐼)𝐸(𝑎𝐽) ∨ ¬ (𝑎𝐾)𝐸(𝑎𝐿))} = {𝑎 ∈ (𝑀m ω) ∣ ∀𝑧𝑀 if-(𝐼 = 𝑛, if-(𝑗 = 𝑛, 𝑧𝐸𝑧, 𝑧𝐸(𝑎𝑗)), if-(𝑗 = 𝑛, (𝑎𝐼)𝐸𝑧, (𝑎𝐼)𝐸(𝑎𝑗)))}) ↔ (𝑋 = ∀𝑔𝑛(𝐼𝑔𝐽) ∧ {𝑎 ∈ (𝑀m ω) ∣ (¬ (𝑎𝐼)𝐸(𝑎𝐽) ∨ ¬ (𝑎𝐾)𝐸(𝑎𝐿))} = {𝑎 ∈ (𝑀m ω) ∣ ∀𝑧𝑀 if-(𝐼 = 𝑛, if-(𝐽 = 𝑛, 𝑧𝐸𝑧, 𝑧𝐸(𝑎𝐽)), if-(𝐽 = 𝑛, (𝑎𝐼)𝐸𝑧, (𝑎𝐼)𝐸(𝑎𝐽)))})))
9089rexbidv 3296 . . . . . . . . 9 (𝑗 = 𝐽 → (∃𝑛 ∈ ω (𝑋 = ∀𝑔𝑛(𝐼𝑔𝑗) ∧ {𝑎 ∈ (𝑀m ω) ∣ (¬ (𝑎𝐼)𝐸(𝑎𝐽) ∨ ¬ (𝑎𝐾)𝐸(𝑎𝐿))} = {𝑎 ∈ (𝑀m ω) ∣ ∀𝑧𝑀 if-(𝐼 = 𝑛, if-(𝑗 = 𝑛, 𝑧𝐸𝑧, 𝑧𝐸(𝑎𝑗)), if-(𝑗 = 𝑛, (𝑎𝐼)𝐸𝑧, (𝑎𝐼)𝐸(𝑎𝑗)))}) ↔ ∃𝑛 ∈ ω (𝑋 = ∀𝑔𝑛(𝐼𝑔𝐽) ∧ {𝑎 ∈ (𝑀m ω) ∣ (¬ (𝑎𝐼)𝐸(𝑎𝐽) ∨ ¬ (𝑎𝐾)𝐸(𝑎𝐿))} = {𝑎 ∈ (𝑀m ω) ∣ ∀𝑧𝑀 if-(𝐼 = 𝑛, if-(𝐽 = 𝑛, 𝑧𝐸𝑧, 𝑧𝐸(𝑎𝐽)), if-(𝐽 = 𝑛, (𝑎𝐼)𝐸𝑧, (𝑎𝐼)𝐸(𝑎𝐽)))})))
9175, 90orbi12d 915 . . . . . . . 8 (𝑗 = 𝐽 → ((∃𝑘 ∈ ω ∃𝑙 ∈ ω (𝑋 = ((𝐼𝑔𝑗)⊼𝑔(𝑘𝑔𝑙)) ∧ {𝑎 ∈ (𝑀m ω) ∣ (¬ (𝑎𝐼)𝐸(𝑎𝐽) ∨ ¬ (𝑎𝐾)𝐸(𝑎𝐿))} = {𝑎 ∈ (𝑀m ω) ∣ (¬ (𝑎𝐼)𝐸(𝑎𝑗) ∨ ¬ (𝑎𝑘)𝐸(𝑎𝑙))}) ∨ ∃𝑛 ∈ ω (𝑋 = ∀𝑔𝑛(𝐼𝑔𝑗) ∧ {𝑎 ∈ (𝑀m ω) ∣ (¬ (𝑎𝐼)𝐸(𝑎𝐽) ∨ ¬ (𝑎𝐾)𝐸(𝑎𝐿))} = {𝑎 ∈ (𝑀m ω) ∣ ∀𝑧𝑀 if-(𝐼 = 𝑛, if-(𝑗 = 𝑛, 𝑧𝐸𝑧, 𝑧𝐸(𝑎𝑗)), if-(𝑗 = 𝑛, (𝑎𝐼)𝐸𝑧, (𝑎𝐼)𝐸(𝑎𝑗)))})) ↔ (∃𝑘 ∈ ω ∃𝑙 ∈ ω (𝑋 = ((𝐼𝑔𝐽)⊼𝑔(𝑘𝑔𝑙)) ∧ {𝑎 ∈ (𝑀m ω) ∣ (¬ (𝑎𝐼)𝐸(𝑎𝐽) ∨ ¬ (𝑎𝐾)𝐸(𝑎𝐿))} = {𝑎 ∈ (𝑀m ω) ∣ (¬ (𝑎𝐼)𝐸(𝑎𝐽) ∨ ¬ (𝑎𝑘)𝐸(𝑎𝑙))}) ∨ ∃𝑛 ∈ ω (𝑋 = ∀𝑔𝑛(𝐼𝑔𝐽) ∧ {𝑎 ∈ (𝑀m ω) ∣ (¬ (𝑎𝐼)𝐸(𝑎𝐽) ∨ ¬ (𝑎𝐾)𝐸(𝑎𝐿))} = {𝑎 ∈ (𝑀m ω) ∣ ∀𝑧𝑀 if-(𝐼 = 𝑛, if-(𝐽 = 𝑛, 𝑧𝐸𝑧, 𝑧𝐸(𝑎𝐽)), if-(𝐽 = 𝑛, (𝑎𝐼)𝐸𝑧, (𝑎𝐼)𝐸(𝑎𝐽)))}))))
9264, 91rspc2ev 3632 . . . . . . 7 ((𝐼 ∈ ω ∧ 𝐽 ∈ ω ∧ (∃𝑘 ∈ ω ∃𝑙 ∈ ω (𝑋 = ((𝐼𝑔𝐽)⊼𝑔(𝑘𝑔𝑙)) ∧ {𝑎 ∈ (𝑀m ω) ∣ (¬ (𝑎𝐼)𝐸(𝑎𝐽) ∨ ¬ (𝑎𝐾)𝐸(𝑎𝐿))} = {𝑎 ∈ (𝑀m ω) ∣ (¬ (𝑎𝐼)𝐸(𝑎𝐽) ∨ ¬ (𝑎𝑘)𝐸(𝑎𝑙))}) ∨ ∃𝑛 ∈ ω (𝑋 = ∀𝑔𝑛(𝐼𝑔𝐽) ∧ {𝑎 ∈ (𝑀m ω) ∣ (¬ (𝑎𝐼)𝐸(𝑎𝐽) ∨ ¬ (𝑎𝐾)𝐸(𝑎𝐿))} = {𝑎 ∈ (𝑀m ω) ∣ ∀𝑧𝑀 if-(𝐼 = 𝑛, if-(𝐽 = 𝑛, 𝑧𝐸𝑧, 𝑧𝐸(𝑎𝐽)), if-(𝐽 = 𝑛, (𝑎𝐼)𝐸𝑧, (𝑎𝐼)𝐸(𝑎𝐽)))}))) → ∃𝑖 ∈ ω ∃𝑗 ∈ ω (∃𝑘 ∈ ω ∃𝑙 ∈ ω (𝑋 = ((𝑖𝑔𝑗)⊼𝑔(𝑘𝑔𝑙)) ∧ {𝑎 ∈ (𝑀m ω) ∣ (¬ (𝑎𝐼)𝐸(𝑎𝐽) ∨ ¬ (𝑎𝐾)𝐸(𝑎𝐿))} = {𝑎 ∈ (𝑀m ω) ∣ (¬ (𝑎𝑖)𝐸(𝑎𝑗) ∨ ¬ (𝑎𝑘)𝐸(𝑎𝑙))}) ∨ ∃𝑛 ∈ ω (𝑋 = ∀𝑔𝑛(𝑖𝑔𝑗) ∧ {𝑎 ∈ (𝑀m ω) ∣ (¬ (𝑎𝐼)𝐸(𝑎𝐽) ∨ ¬ (𝑎𝐾)𝐸(𝑎𝐿))} = {𝑎 ∈ (𝑀m ω) ∣ ∀𝑧𝑀 if-(𝑖 = 𝑛, if-(𝑗 = 𝑛, 𝑧𝐸𝑧, 𝑧𝐸(𝑎𝑗)), if-(𝑗 = 𝑛, (𝑎𝑖)𝐸𝑧, (𝑎𝑖)𝐸(𝑎𝑗)))})))
939, 10, 39, 92syl3anc 1366 . . . . . 6 (((𝑀𝑉𝐸𝑊) ∧ (𝐼 ∈ ω ∧ 𝐽 ∈ ω) ∧ (𝐾 ∈ ω ∧ 𝐿 ∈ ω)) → ∃𝑖 ∈ ω ∃𝑗 ∈ ω (∃𝑘 ∈ ω ∃𝑙 ∈ ω (𝑋 = ((𝑖𝑔𝑗)⊼𝑔(𝑘𝑔𝑙)) ∧ {𝑎 ∈ (𝑀m ω) ∣ (¬ (𝑎𝐼)𝐸(𝑎𝐽) ∨ ¬ (𝑎𝐾)𝐸(𝑎𝐿))} = {𝑎 ∈ (𝑀m ω) ∣ (¬ (𝑎𝑖)𝐸(𝑎𝑗) ∨ ¬ (𝑎𝑘)𝐸(𝑎𝑙))}) ∨ ∃𝑛 ∈ ω (𝑋 = ∀𝑔𝑛(𝑖𝑔𝑗) ∧ {𝑎 ∈ (𝑀m ω) ∣ (¬ (𝑎𝐼)𝐸(𝑎𝐽) ∨ ¬ (𝑎𝐾)𝐸(𝑎𝐿))} = {𝑎 ∈ (𝑀m ω) ∣ ∀𝑧𝑀 if-(𝑖 = 𝑛, if-(𝑗 = 𝑛, 𝑧𝐸𝑧, 𝑧𝐸(𝑎𝑗)), if-(𝑗 = 𝑛, (𝑎𝑖)𝐸𝑧, (𝑎𝑖)𝐸(𝑎𝑗)))})))
9413ovexi 7183 . . . . . . . 8 𝑋 ∈ V
9594a1i 11 . . . . . . 7 (((𝑀𝑉𝐸𝑊) ∧ (𝐼 ∈ ω ∧ 𝐽 ∈ ω) ∧ (𝐾 ∈ ω ∧ 𝐿 ∈ ω)) → 𝑋 ∈ V)
96 ovex 7182 . . . . . . . 8 (𝑀m ω) ∈ V
9796rabex 5228 . . . . . . 7 {𝑎 ∈ (𝑀m ω) ∣ (¬ (𝑎𝐼)𝐸(𝑎𝐽) ∨ ¬ (𝑎𝐾)𝐸(𝑎𝐿))} ∈ V
98 eqeq1 2824 . . . . . . . . . . . 12 (𝑥 = 𝑋 → (𝑥 = ((𝑖𝑔𝑗)⊼𝑔(𝑘𝑔𝑙)) ↔ 𝑋 = ((𝑖𝑔𝑗)⊼𝑔(𝑘𝑔𝑙))))
99 eqeq1 2824 . . . . . . . . . . . 12 (𝑦 = {𝑎 ∈ (𝑀m ω) ∣ (¬ (𝑎𝐼)𝐸(𝑎𝐽) ∨ ¬ (𝑎𝐾)𝐸(𝑎𝐿))} → (𝑦 = {𝑎 ∈ (𝑀m ω) ∣ (¬ (𝑎𝑖)𝐸(𝑎𝑗) ∨ ¬ (𝑎𝑘)𝐸(𝑎𝑙))} ↔ {𝑎 ∈ (𝑀m ω) ∣ (¬ (𝑎𝐼)𝐸(𝑎𝐽) ∨ ¬ (𝑎𝐾)𝐸(𝑎𝐿))} = {𝑎 ∈ (𝑀m ω) ∣ (¬ (𝑎𝑖)𝐸(𝑎𝑗) ∨ ¬ (𝑎𝑘)𝐸(𝑎𝑙))}))
10098, 99bi2anan9 637 . . . . . . . . . . 11 ((𝑥 = 𝑋𝑦 = {𝑎 ∈ (𝑀m ω) ∣ (¬ (𝑎𝐼)𝐸(𝑎𝐽) ∨ ¬ (𝑎𝐾)𝐸(𝑎𝐿))}) → ((𝑥 = ((𝑖𝑔𝑗)⊼𝑔(𝑘𝑔𝑙)) ∧ 𝑦 = {𝑎 ∈ (𝑀m ω) ∣ (¬ (𝑎𝑖)𝐸(𝑎𝑗) ∨ ¬ (𝑎𝑘)𝐸(𝑎𝑙))}) ↔ (𝑋 = ((𝑖𝑔𝑗)⊼𝑔(𝑘𝑔𝑙)) ∧ {𝑎 ∈ (𝑀m ω) ∣ (¬ (𝑎𝐼)𝐸(𝑎𝐽) ∨ ¬ (𝑎𝐾)𝐸(𝑎𝐿))} = {𝑎 ∈ (𝑀m ω) ∣ (¬ (𝑎𝑖)𝐸(𝑎𝑗) ∨ ¬ (𝑎𝑘)𝐸(𝑎𝑙))})))
1011002rexbidv 3299 . . . . . . . . . 10 ((𝑥 = 𝑋𝑦 = {𝑎 ∈ (𝑀m ω) ∣ (¬ (𝑎𝐼)𝐸(𝑎𝐽) ∨ ¬ (𝑎𝐾)𝐸(𝑎𝐿))}) → (∃𝑘 ∈ ω ∃𝑙 ∈ ω (𝑥 = ((𝑖𝑔𝑗)⊼𝑔(𝑘𝑔𝑙)) ∧ 𝑦 = {𝑎 ∈ (𝑀m ω) ∣ (¬ (𝑎𝑖)𝐸(𝑎𝑗) ∨ ¬ (𝑎𝑘)𝐸(𝑎𝑙))}) ↔ ∃𝑘 ∈ ω ∃𝑙 ∈ ω (𝑋 = ((𝑖𝑔𝑗)⊼𝑔(𝑘𝑔𝑙)) ∧ {𝑎 ∈ (𝑀m ω) ∣ (¬ (𝑎𝐼)𝐸(𝑎𝐽) ∨ ¬ (𝑎𝐾)𝐸(𝑎𝐿))} = {𝑎 ∈ (𝑀m ω) ∣ (¬ (𝑎𝑖)𝐸(𝑎𝑗) ∨ ¬ (𝑎𝑘)𝐸(𝑎𝑙))})))
102 eqeq1 2824 . . . . . . . . . . . 12 (𝑥 = 𝑋 → (𝑥 = ∀𝑔𝑛(𝑖𝑔𝑗) ↔ 𝑋 = ∀𝑔𝑛(𝑖𝑔𝑗)))
103 eqeq1 2824 . . . . . . . . . . . 12 (𝑦 = {𝑎 ∈ (𝑀m ω) ∣ (¬ (𝑎𝐼)𝐸(𝑎𝐽) ∨ ¬ (𝑎𝐾)𝐸(𝑎𝐿))} → (𝑦 = {𝑎 ∈ (𝑀m ω) ∣ ∀𝑧𝑀 if-(𝑖 = 𝑛, if-(𝑗 = 𝑛, 𝑧𝐸𝑧, 𝑧𝐸(𝑎𝑗)), if-(𝑗 = 𝑛, (𝑎𝑖)𝐸𝑧, (𝑎𝑖)𝐸(𝑎𝑗)))} ↔ {𝑎 ∈ (𝑀m ω) ∣ (¬ (𝑎𝐼)𝐸(𝑎𝐽) ∨ ¬ (𝑎𝐾)𝐸(𝑎𝐿))} = {𝑎 ∈ (𝑀m ω) ∣ ∀𝑧𝑀 if-(𝑖 = 𝑛, if-(𝑗 = 𝑛, 𝑧𝐸𝑧, 𝑧𝐸(𝑎𝑗)), if-(𝑗 = 𝑛, (𝑎𝑖)𝐸𝑧, (𝑎𝑖)𝐸(𝑎𝑗)))}))
104102, 103bi2anan9 637 . . . . . . . . . . 11 ((𝑥 = 𝑋𝑦 = {𝑎 ∈ (𝑀m ω) ∣ (¬ (𝑎𝐼)𝐸(𝑎𝐽) ∨ ¬ (𝑎𝐾)𝐸(𝑎𝐿))}) → ((𝑥 = ∀𝑔𝑛(𝑖𝑔𝑗) ∧ 𝑦 = {𝑎 ∈ (𝑀m ω) ∣ ∀𝑧𝑀 if-(𝑖 = 𝑛, if-(𝑗 = 𝑛, 𝑧𝐸𝑧, 𝑧𝐸(𝑎𝑗)), if-(𝑗 = 𝑛, (𝑎𝑖)𝐸𝑧, (𝑎𝑖)𝐸(𝑎𝑗)))}) ↔ (𝑋 = ∀𝑔𝑛(𝑖𝑔𝑗) ∧ {𝑎 ∈ (𝑀m ω) ∣ (¬ (𝑎𝐼)𝐸(𝑎𝐽) ∨ ¬ (𝑎𝐾)𝐸(𝑎𝐿))} = {𝑎 ∈ (𝑀m ω) ∣ ∀𝑧𝑀 if-(𝑖 = 𝑛, if-(𝑗 = 𝑛, 𝑧𝐸𝑧, 𝑧𝐸(𝑎𝑗)), if-(𝑗 = 𝑛, (𝑎𝑖)𝐸𝑧, (𝑎𝑖)𝐸(𝑎𝑗)))})))
105104rexbidv 3296 . . . . . . . . . 10 ((𝑥 = 𝑋𝑦 = {𝑎 ∈ (𝑀m ω) ∣ (¬ (𝑎𝐼)𝐸(𝑎𝐽) ∨ ¬ (𝑎𝐾)𝐸(𝑎𝐿))}) → (∃𝑛 ∈ ω (𝑥 = ∀𝑔𝑛(𝑖𝑔𝑗) ∧ 𝑦 = {𝑎 ∈ (𝑀m ω) ∣ ∀𝑧𝑀 if-(𝑖 = 𝑛, if-(𝑗 = 𝑛, 𝑧𝐸𝑧, 𝑧𝐸(𝑎𝑗)), if-(𝑗 = 𝑛, (𝑎𝑖)𝐸𝑧, (𝑎𝑖)𝐸(𝑎𝑗)))}) ↔ ∃𝑛 ∈ ω (𝑋 = ∀𝑔𝑛(𝑖𝑔𝑗) ∧ {𝑎 ∈ (𝑀m ω) ∣ (¬ (𝑎𝐼)𝐸(𝑎𝐽) ∨ ¬ (𝑎𝐾)𝐸(𝑎𝐿))} = {𝑎 ∈ (𝑀m ω) ∣ ∀𝑧𝑀 if-(𝑖 = 𝑛, if-(𝑗 = 𝑛, 𝑧𝐸𝑧, 𝑧𝐸(𝑎𝑗)), if-(𝑗 = 𝑛, (𝑎𝑖)𝐸𝑧, (𝑎𝑖)𝐸(𝑎𝑗)))})))
106101, 105orbi12d 915 . . . . . . . . 9 ((𝑥 = 𝑋𝑦 = {𝑎 ∈ (𝑀m ω) ∣ (¬ (𝑎𝐼)𝐸(𝑎𝐽) ∨ ¬ (𝑎𝐾)𝐸(𝑎𝐿))}) → ((∃𝑘 ∈ ω ∃𝑙 ∈ ω (𝑥 = ((𝑖𝑔𝑗)⊼𝑔(𝑘𝑔𝑙)) ∧ 𝑦 = {𝑎 ∈ (𝑀m ω) ∣ (¬ (𝑎𝑖)𝐸(𝑎𝑗) ∨ ¬ (𝑎𝑘)𝐸(𝑎𝑙))}) ∨ ∃𝑛 ∈ ω (𝑥 = ∀𝑔𝑛(𝑖𝑔𝑗) ∧ 𝑦 = {𝑎 ∈ (𝑀m ω) ∣ ∀𝑧𝑀 if-(𝑖 = 𝑛, if-(𝑗 = 𝑛, 𝑧𝐸𝑧, 𝑧𝐸(𝑎𝑗)), if-(𝑗 = 𝑛, (𝑎𝑖)𝐸𝑧, (𝑎𝑖)𝐸(𝑎𝑗)))})) ↔ (∃𝑘 ∈ ω ∃𝑙 ∈ ω (𝑋 = ((𝑖𝑔𝑗)⊼𝑔(𝑘𝑔𝑙)) ∧ {𝑎 ∈ (𝑀m ω) ∣ (¬ (𝑎𝐼)𝐸(𝑎𝐽) ∨ ¬ (𝑎𝐾)𝐸(𝑎𝐿))} = {𝑎 ∈ (𝑀m ω) ∣ (¬ (𝑎𝑖)𝐸(𝑎𝑗) ∨ ¬ (𝑎𝑘)𝐸(𝑎𝑙))}) ∨ ∃𝑛 ∈ ω (𝑋 = ∀𝑔𝑛(𝑖𝑔𝑗) ∧ {𝑎 ∈ (𝑀m ω) ∣ (¬ (𝑎𝐼)𝐸(𝑎𝐽) ∨ ¬ (𝑎𝐾)𝐸(𝑎𝐿))} = {𝑎 ∈ (𝑀m ω) ∣ ∀𝑧𝑀 if-(𝑖 = 𝑛, if-(𝑗 = 𝑛, 𝑧𝐸𝑧, 𝑧𝐸(𝑎𝑗)), if-(𝑗 = 𝑛, (𝑎𝑖)𝐸𝑧, (𝑎𝑖)𝐸(𝑎𝑗)))}))))
1071062rexbidv 3299 . . . . . . . 8 ((𝑥 = 𝑋𝑦 = {𝑎 ∈ (𝑀m ω) ∣ (¬ (𝑎𝐼)𝐸(𝑎𝐽) ∨ ¬ (𝑎𝐾)𝐸(𝑎𝐿))}) → (∃𝑖 ∈ ω ∃𝑗 ∈ ω (∃𝑘 ∈ ω ∃𝑙 ∈ ω (𝑥 = ((𝑖𝑔𝑗)⊼𝑔(𝑘𝑔𝑙)) ∧ 𝑦 = {𝑎 ∈ (𝑀m ω) ∣ (¬ (𝑎𝑖)𝐸(𝑎𝑗) ∨ ¬ (𝑎𝑘)𝐸(𝑎𝑙))}) ∨ ∃𝑛 ∈ ω (𝑥 = ∀𝑔𝑛(𝑖𝑔𝑗) ∧ 𝑦 = {𝑎 ∈ (𝑀m ω) ∣ ∀𝑧𝑀 if-(𝑖 = 𝑛, if-(𝑗 = 𝑛, 𝑧𝐸𝑧, 𝑧𝐸(𝑎𝑗)), if-(𝑗 = 𝑛, (𝑎𝑖)𝐸𝑧, (𝑎𝑖)𝐸(𝑎𝑗)))})) ↔ ∃𝑖 ∈ ω ∃𝑗 ∈ ω (∃𝑘 ∈ ω ∃𝑙 ∈ ω (𝑋 = ((𝑖𝑔𝑗)⊼𝑔(𝑘𝑔𝑙)) ∧ {𝑎 ∈ (𝑀m ω) ∣ (¬ (𝑎𝐼)𝐸(𝑎𝐽) ∨ ¬ (𝑎𝐾)𝐸(𝑎𝐿))} = {𝑎 ∈ (𝑀m ω) ∣ (¬ (𝑎𝑖)𝐸(𝑎𝑗) ∨ ¬ (𝑎𝑘)𝐸(𝑎𝑙))}) ∨ ∃𝑛 ∈ ω (𝑋 = ∀𝑔𝑛(𝑖𝑔𝑗) ∧ {𝑎 ∈ (𝑀m ω) ∣ (¬ (𝑎𝐼)𝐸(𝑎𝐽) ∨ ¬ (𝑎𝐾)𝐸(𝑎𝐿))} = {𝑎 ∈ (𝑀m ω) ∣ ∀𝑧𝑀 if-(𝑖 = 𝑛, if-(𝑗 = 𝑛, 𝑧𝐸𝑧, 𝑧𝐸(𝑎𝑗)), if-(𝑗 = 𝑛, (𝑎𝑖)𝐸𝑧, (𝑎𝑖)𝐸(𝑎𝑗)))}))))
108107opelopabga 5413 . . . . . . 7 ((𝑋 ∈ V ∧ {𝑎 ∈ (𝑀m ω) ∣ (¬ (𝑎𝐼)𝐸(𝑎𝐽) ∨ ¬ (𝑎𝐾)𝐸(𝑎𝐿))} ∈ V) → (⟨𝑋, {𝑎 ∈ (𝑀m ω) ∣ (¬ (𝑎𝐼)𝐸(𝑎𝐽) ∨ ¬ (𝑎𝐾)𝐸(𝑎𝐿))}⟩ ∈ {⟨𝑥, 𝑦⟩ ∣ ∃𝑖 ∈ ω ∃𝑗 ∈ ω (∃𝑘 ∈ ω ∃𝑙 ∈ ω (𝑥 = ((𝑖𝑔𝑗)⊼𝑔(𝑘𝑔𝑙)) ∧ 𝑦 = {𝑎 ∈ (𝑀m ω) ∣ (¬ (𝑎𝑖)𝐸(𝑎𝑗) ∨ ¬ (𝑎𝑘)𝐸(𝑎𝑙))}) ∨ ∃𝑛 ∈ ω (𝑥 = ∀𝑔𝑛(𝑖𝑔𝑗) ∧ 𝑦 = {𝑎 ∈ (𝑀m ω) ∣ ∀𝑧𝑀 if-(𝑖 = 𝑛, if-(𝑗 = 𝑛, 𝑧𝐸𝑧, 𝑧𝐸(𝑎𝑗)), if-(𝑗 = 𝑛, (𝑎𝑖)𝐸𝑧, (𝑎𝑖)𝐸(𝑎𝑗)))}))} ↔ ∃𝑖 ∈ ω ∃𝑗 ∈ ω (∃𝑘 ∈ ω ∃𝑙 ∈ ω (𝑋 = ((𝑖𝑔𝑗)⊼𝑔(𝑘𝑔𝑙)) ∧ {𝑎 ∈ (𝑀m ω) ∣ (¬ (𝑎𝐼)𝐸(𝑎𝐽) ∨ ¬ (𝑎𝐾)𝐸(𝑎𝐿))} = {𝑎 ∈ (𝑀m ω) ∣ (¬ (𝑎𝑖)𝐸(𝑎𝑗) ∨ ¬ (𝑎𝑘)𝐸(𝑎𝑙))}) ∨ ∃𝑛 ∈ ω (𝑋 = ∀𝑔𝑛(𝑖𝑔𝑗) ∧ {𝑎 ∈ (𝑀m ω) ∣ (¬ (𝑎𝐼)𝐸(𝑎𝐽) ∨ ¬ (𝑎𝐾)𝐸(𝑎𝐿))} = {𝑎 ∈ (𝑀m ω) ∣ ∀𝑧𝑀 if-(𝑖 = 𝑛, if-(𝑗 = 𝑛, 𝑧𝐸𝑧, 𝑧𝐸(𝑎𝑗)), if-(𝑗 = 𝑛, (𝑎𝑖)𝐸𝑧, (𝑎𝑖)𝐸(𝑎𝑗)))}))))
10995, 97, 108sylancl 588 . . . . . 6 (((𝑀𝑉𝐸𝑊) ∧ (𝐼 ∈ ω ∧ 𝐽 ∈ ω) ∧ (𝐾 ∈ ω ∧ 𝐿 ∈ ω)) → (⟨𝑋, {𝑎 ∈ (𝑀m ω) ∣ (¬ (𝑎𝐼)𝐸(𝑎𝐽) ∨ ¬ (𝑎𝐾)𝐸(𝑎𝐿))}⟩ ∈ {⟨𝑥, 𝑦⟩ ∣ ∃𝑖 ∈ ω ∃𝑗 ∈ ω (∃𝑘 ∈ ω ∃𝑙 ∈ ω (𝑥 = ((𝑖𝑔𝑗)⊼𝑔(𝑘𝑔𝑙)) ∧ 𝑦 = {𝑎 ∈ (𝑀m ω) ∣ (¬ (𝑎𝑖)𝐸(𝑎𝑗) ∨ ¬ (𝑎𝑘)𝐸(𝑎𝑙))}) ∨ ∃𝑛 ∈ ω (𝑥 = ∀𝑔𝑛(𝑖𝑔𝑗) ∧ 𝑦 = {𝑎 ∈ (𝑀m ω) ∣ ∀𝑧𝑀 if-(𝑖 = 𝑛, if-(𝑗 = 𝑛, 𝑧𝐸𝑧, 𝑧𝐸(𝑎𝑗)), if-(𝑗 = 𝑛, (𝑎𝑖)𝐸𝑧, (𝑎𝑖)𝐸(𝑎𝑗)))}))} ↔ ∃𝑖 ∈ ω ∃𝑗 ∈ ω (∃𝑘 ∈ ω ∃𝑙 ∈ ω (𝑋 = ((𝑖𝑔𝑗)⊼𝑔(𝑘𝑔𝑙)) ∧ {𝑎 ∈ (𝑀m ω) ∣ (¬ (𝑎𝐼)𝐸(𝑎𝐽) ∨ ¬ (𝑎𝐾)𝐸(𝑎𝐿))} = {𝑎 ∈ (𝑀m ω) ∣ (¬ (𝑎𝑖)𝐸(𝑎𝑗) ∨ ¬ (𝑎𝑘)𝐸(𝑎𝑙))}) ∨ ∃𝑛 ∈ ω (𝑋 = ∀𝑔𝑛(𝑖𝑔𝑗) ∧ {𝑎 ∈ (𝑀m ω) ∣ (¬ (𝑎𝐼)𝐸(𝑎𝐽) ∨ ¬ (𝑎𝐾)𝐸(𝑎𝐿))} = {𝑎 ∈ (𝑀m ω) ∣ ∀𝑧𝑀 if-(𝑖 = 𝑛, if-(𝑗 = 𝑛, 𝑧𝐸𝑧, 𝑧𝐸(𝑎𝑗)), if-(𝑗 = 𝑛, (𝑎𝑖)𝐸𝑧, (𝑎𝑖)𝐸(𝑎𝑗)))}))))
11093, 109mpbird 259 . . . . 5 (((𝑀𝑉𝐸𝑊) ∧ (𝐼 ∈ ω ∧ 𝐽 ∈ ω) ∧ (𝐾 ∈ ω ∧ 𝐿 ∈ ω)) → ⟨𝑋, {𝑎 ∈ (𝑀m ω) ∣ (¬ (𝑎𝐼)𝐸(𝑎𝐽) ∨ ¬ (𝑎𝐾)𝐸(𝑎𝐿))}⟩ ∈ {⟨𝑥, 𝑦⟩ ∣ ∃𝑖 ∈ ω ∃𝑗 ∈ ω (∃𝑘 ∈ ω ∃𝑙 ∈ ω (𝑥 = ((𝑖𝑔𝑗)⊼𝑔(𝑘𝑔𝑙)) ∧ 𝑦 = {𝑎 ∈ (𝑀m ω) ∣ (¬ (𝑎𝑖)𝐸(𝑎𝑗) ∨ ¬ (𝑎𝑘)𝐸(𝑎𝑙))}) ∨ ∃𝑛 ∈ ω (𝑥 = ∀𝑔𝑛(𝑖𝑔𝑗) ∧ 𝑦 = {𝑎 ∈ (𝑀m ω) ∣ ∀𝑧𝑀 if-(𝑖 = 𝑛, if-(𝑗 = 𝑛, 𝑧𝐸𝑧, 𝑧𝐸(𝑎𝑗)), if-(𝑗 = 𝑛, (𝑎𝑖)𝐸𝑧, (𝑎𝑖)𝐸(𝑎𝑗)))}))})
111110olcd 870 . . . 4 (((𝑀𝑉𝐸𝑊) ∧ (𝐼 ∈ ω ∧ 𝐽 ∈ ω) ∧ (𝐾 ∈ ω ∧ 𝐿 ∈ ω)) → (⟨𝑋, {𝑎 ∈ (𝑀m ω) ∣ (¬ (𝑎𝐼)𝐸(𝑎𝐽) ∨ ¬ (𝑎𝐾)𝐸(𝑎𝐿))}⟩ ∈ ((𝑀 Sat 𝐸)‘∅) ∨ ⟨𝑋, {𝑎 ∈ (𝑀m ω) ∣ (¬ (𝑎𝐼)𝐸(𝑎𝐽) ∨ ¬ (𝑎𝐾)𝐸(𝑎𝐿))}⟩ ∈ {⟨𝑥, 𝑦⟩ ∣ ∃𝑖 ∈ ω ∃𝑗 ∈ ω (∃𝑘 ∈ ω ∃𝑙 ∈ ω (𝑥 = ((𝑖𝑔𝑗)⊼𝑔(𝑘𝑔𝑙)) ∧ 𝑦 = {𝑎 ∈ (𝑀m ω) ∣ (¬ (𝑎𝑖)𝐸(𝑎𝑗) ∨ ¬ (𝑎𝑘)𝐸(𝑎𝑙))}) ∨ ∃𝑛 ∈ ω (𝑥 = ∀𝑔𝑛(𝑖𝑔𝑗) ∧ 𝑦 = {𝑎 ∈ (𝑀m ω) ∣ ∀𝑧𝑀 if-(𝑖 = 𝑛, if-(𝑗 = 𝑛, 𝑧𝐸𝑧, 𝑧𝐸(𝑎𝑗)), if-(𝑗 = 𝑛, (𝑎𝑖)𝐸𝑧, (𝑎𝑖)𝐸(𝑎𝑗)))}))}))
112 elun 4118 . . . 4 (⟨𝑋, {𝑎 ∈ (𝑀m ω) ∣ (¬ (𝑎𝐼)𝐸(𝑎𝐽) ∨ ¬ (𝑎𝐾)𝐸(𝑎𝐿))}⟩ ∈ (((𝑀 Sat 𝐸)‘∅) ∪ {⟨𝑥, 𝑦⟩ ∣ ∃𝑖 ∈ ω ∃𝑗 ∈ ω (∃𝑘 ∈ ω ∃𝑙 ∈ ω (𝑥 = ((𝑖𝑔𝑗)⊼𝑔(𝑘𝑔𝑙)) ∧ 𝑦 = {𝑎 ∈ (𝑀m ω) ∣ (¬ (𝑎𝑖)𝐸(𝑎𝑗) ∨ ¬ (𝑎𝑘)𝐸(𝑎𝑙))}) ∨ ∃𝑛 ∈ ω (𝑥 = ∀𝑔𝑛(𝑖𝑔𝑗) ∧ 𝑦 = {𝑎 ∈ (𝑀m ω) ∣ ∀𝑧𝑀 if-(𝑖 = 𝑛, if-(𝑗 = 𝑛, 𝑧𝐸𝑧, 𝑧𝐸(𝑎𝑗)), if-(𝑗 = 𝑛, (𝑎𝑖)𝐸𝑧, (𝑎𝑖)𝐸(𝑎𝑗)))}))}) ↔ (⟨𝑋, {𝑎 ∈ (𝑀m ω) ∣ (¬ (𝑎𝐼)𝐸(𝑎𝐽) ∨ ¬ (𝑎𝐾)𝐸(𝑎𝐿))}⟩ ∈ ((𝑀 Sat 𝐸)‘∅) ∨ ⟨𝑋, {𝑎 ∈ (𝑀m ω) ∣ (¬ (𝑎𝐼)𝐸(𝑎𝐽) ∨ ¬ (𝑎𝐾)𝐸(𝑎𝐿))}⟩ ∈ {⟨𝑥, 𝑦⟩ ∣ ∃𝑖 ∈ ω ∃𝑗 ∈ ω (∃𝑘 ∈ ω ∃𝑙 ∈ ω (𝑥 = ((𝑖𝑔𝑗)⊼𝑔(𝑘𝑔𝑙)) ∧ 𝑦 = {𝑎 ∈ (𝑀m ω) ∣ (¬ (𝑎𝑖)𝐸(𝑎𝑗) ∨ ¬ (𝑎𝑘)𝐸(𝑎𝑙))}) ∨ ∃𝑛 ∈ ω (𝑥 = ∀𝑔𝑛(𝑖𝑔𝑗) ∧ 𝑦 = {𝑎 ∈ (𝑀m ω) ∣ ∀𝑧𝑀 if-(𝑖 = 𝑛, if-(𝑗 = 𝑛, 𝑧𝐸𝑧, 𝑧𝐸(𝑎𝑗)), if-(𝑗 = 𝑛, (𝑎𝑖)𝐸𝑧, (𝑎𝑖)𝐸(𝑎𝑗)))}))}))
113111, 112sylibr 236 . . 3 (((𝑀𝑉𝐸𝑊) ∧ (𝐼 ∈ ω ∧ 𝐽 ∈ ω) ∧ (𝐾 ∈ ω ∧ 𝐿 ∈ ω)) → ⟨𝑋, {𝑎 ∈ (𝑀m ω) ∣ (¬ (𝑎𝐼)𝐸(𝑎𝐽) ∨ ¬ (𝑎𝐾)𝐸(𝑎𝐿))}⟩ ∈ (((𝑀 Sat 𝐸)‘∅) ∪ {⟨𝑥, 𝑦⟩ ∣ ∃𝑖 ∈ ω ∃𝑗 ∈ ω (∃𝑘 ∈ ω ∃𝑙 ∈ ω (𝑥 = ((𝑖𝑔𝑗)⊼𝑔(𝑘𝑔𝑙)) ∧ 𝑦 = {𝑎 ∈ (𝑀m ω) ∣ (¬ (𝑎𝑖)𝐸(𝑎𝑗) ∨ ¬ (𝑎𝑘)𝐸(𝑎𝑙))}) ∨ ∃𝑛 ∈ ω (𝑥 = ∀𝑔𝑛(𝑖𝑔𝑗) ∧ 𝑦 = {𝑎 ∈ (𝑀m ω) ∣ ∀𝑧𝑀 if-(𝑖 = 𝑛, if-(𝑗 = 𝑛, 𝑧𝐸𝑧, 𝑧𝐸(𝑎𝑗)), if-(𝑗 = 𝑛, (𝑎𝑖)𝐸𝑧, (𝑎𝑖)𝐸(𝑎𝑗)))}))}))
114 eqid 2820 . . . . . 6 (𝑀 Sat 𝐸) = (𝑀 Sat 𝐸)
115114satfv1 32631 . . . . 5 ((𝑀𝑉𝐸𝑊) → ((𝑀 Sat 𝐸)‘1o) = (((𝑀 Sat 𝐸)‘∅) ∪ {⟨𝑥, 𝑦⟩ ∣ ∃𝑖 ∈ ω ∃𝑗 ∈ ω (∃𝑘 ∈ ω ∃𝑙 ∈ ω (𝑥 = ((𝑖𝑔𝑗)⊼𝑔(𝑘𝑔𝑙)) ∧ 𝑦 = {𝑎 ∈ (𝑀m ω) ∣ (¬ (𝑎𝑖)𝐸(𝑎𝑗) ∨ ¬ (𝑎𝑘)𝐸(𝑎𝑙))}) ∨ ∃𝑛 ∈ ω (𝑥 = ∀𝑔𝑛(𝑖𝑔𝑗) ∧ 𝑦 = {𝑎 ∈ (𝑀m ω) ∣ ∀𝑧𝑀 if-(𝑖 = 𝑛, if-(𝑗 = 𝑛, 𝑧𝐸𝑧, 𝑧𝐸(𝑎𝑗)), if-(𝑗 = 𝑛, (𝑎𝑖)𝐸𝑧, (𝑎𝑖)𝐸(𝑎𝑗)))}))}))
116115eleq2d 2897 . . . 4 ((𝑀𝑉𝐸𝑊) → (⟨𝑋, {𝑎 ∈ (𝑀m ω) ∣ (¬ (𝑎𝐼)𝐸(𝑎𝐽) ∨ ¬ (𝑎𝐾)𝐸(𝑎𝐿))}⟩ ∈ ((𝑀 Sat 𝐸)‘1o) ↔ ⟨𝑋, {𝑎 ∈ (𝑀m ω) ∣ (¬ (𝑎𝐼)𝐸(𝑎𝐽) ∨ ¬ (𝑎𝐾)𝐸(𝑎𝐿))}⟩ ∈ (((𝑀 Sat 𝐸)‘∅) ∪ {⟨𝑥, 𝑦⟩ ∣ ∃𝑖 ∈ ω ∃𝑗 ∈ ω (∃𝑘 ∈ ω ∃𝑙 ∈ ω (𝑥 = ((𝑖𝑔𝑗)⊼𝑔(𝑘𝑔𝑙)) ∧ 𝑦 = {𝑎 ∈ (𝑀m ω) ∣ (¬ (𝑎𝑖)𝐸(𝑎𝑗) ∨ ¬ (𝑎𝑘)𝐸(𝑎𝑙))}) ∨ ∃𝑛 ∈ ω (𝑥 = ∀𝑔𝑛(𝑖𝑔𝑗) ∧ 𝑦 = {𝑎 ∈ (𝑀m ω) ∣ ∀𝑧𝑀 if-(𝑖 = 𝑛, if-(𝑗 = 𝑛, 𝑧𝐸𝑧, 𝑧𝐸(𝑎𝑗)), if-(𝑗 = 𝑛, (𝑎𝑖)𝐸𝑧, (𝑎𝑖)𝐸(𝑎𝑗)))}))})))
1171163ad2ant1 1128 . . 3 (((𝑀𝑉𝐸𝑊) ∧ (𝐼 ∈ ω ∧ 𝐽 ∈ ω) ∧ (𝐾 ∈ ω ∧ 𝐿 ∈ ω)) → (⟨𝑋, {𝑎 ∈ (𝑀m ω) ∣ (¬ (𝑎𝐼)𝐸(𝑎𝐽) ∨ ¬ (𝑎𝐾)𝐸(𝑎𝐿))}⟩ ∈ ((𝑀 Sat 𝐸)‘1o) ↔ ⟨𝑋, {𝑎 ∈ (𝑀m ω) ∣ (¬ (𝑎𝐼)𝐸(𝑎𝐽) ∨ ¬ (𝑎𝐾)𝐸(𝑎𝐿))}⟩ ∈ (((𝑀 Sat 𝐸)‘∅) ∪ {⟨𝑥, 𝑦⟩ ∣ ∃𝑖 ∈ ω ∃𝑗 ∈ ω (∃𝑘 ∈ ω ∃𝑙 ∈ ω (𝑥 = ((𝑖𝑔𝑗)⊼𝑔(𝑘𝑔𝑙)) ∧ 𝑦 = {𝑎 ∈ (𝑀m ω) ∣ (¬ (𝑎𝑖)𝐸(𝑎𝑗) ∨ ¬ (𝑎𝑘)𝐸(𝑎𝑙))}) ∨ ∃𝑛 ∈ ω (𝑥 = ∀𝑔𝑛(𝑖𝑔𝑗) ∧ 𝑦 = {𝑎 ∈ (𝑀m ω) ∣ ∀𝑧𝑀 if-(𝑖 = 𝑛, if-(𝑗 = 𝑛, 𝑧𝐸𝑧, 𝑧𝐸(𝑎𝑗)), if-(𝑗 = 𝑛, (𝑎𝑖)𝐸𝑧, (𝑎𝑖)𝐸(𝑎𝑗)))}))})))
118113, 117mpbird 259 . 2 (((𝑀𝑉𝐸𝑊) ∧ (𝐼 ∈ ω ∧ 𝐽 ∈ ω) ∧ (𝐾 ∈ ω ∧ 𝐿 ∈ ω)) → ⟨𝑋, {𝑎 ∈ (𝑀m ω) ∣ (¬ (𝑎𝐼)𝐸(𝑎𝐽) ∨ ¬ (𝑎𝐾)𝐸(𝑎𝐿))}⟩ ∈ ((𝑀 Sat 𝐸)‘1o))
119 funopfv 6710 . 2 (Fun ((𝑀 Sat 𝐸)‘1o) → (⟨𝑋, {𝑎 ∈ (𝑀m ω) ∣ (¬ (𝑎𝐼)𝐸(𝑎𝐽) ∨ ¬ (𝑎𝐾)𝐸(𝑎𝐿))}⟩ ∈ ((𝑀 Sat 𝐸)‘1o) → (((𝑀 Sat 𝐸)‘1o)‘𝑋) = {𝑎 ∈ (𝑀m ω) ∣ (¬ (𝑎𝐼)𝐸(𝑎𝐽) ∨ ¬ (𝑎𝐾)𝐸(𝑎𝐿))}))
1208, 118, 119sylc 65 1 (((𝑀𝑉𝐸𝑊) ∧ (𝐼 ∈ ω ∧ 𝐽 ∈ ω) ∧ (𝐾 ∈ ω ∧ 𝐿 ∈ ω)) → (((𝑀 Sat 𝐸)‘1o)‘𝑋) = {𝑎 ∈ (𝑀m ω) ∣ (¬ (𝑎𝐼)𝐸(𝑎𝐽) ∨ ¬ (𝑎𝐾)𝐸(𝑎𝐿))})
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 208  wa 398  wo 843  if-wif 1057  w3a 1082   = wceq 1536  wcel 2113  wral 3137  wrex 3138  {crab 3141  Vcvv 3491  cun 3927  c0 4284  cop 4566   class class class wbr 5059  {copab 5121  Fun wfun 6342  cfv 6348  (class class class)co 7149  ωcom 7573  1oc1o 8088  m cmap 8399  𝑔cgoe 32601  𝑔cgna 32602  𝑔cgol 32603   Sat csat 32604
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1969  ax-7 2014  ax-8 2115  ax-9 2123  ax-10 2144  ax-11 2160  ax-12 2176  ax-ext 2792  ax-rep 5183  ax-sep 5196  ax-nul 5203  ax-pow 5259  ax-pr 5323  ax-un 7454  ax-inf2 9097
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-ifp 1058  df-3or 1083  df-3an 1084  df-tru 1539  df-ex 1780  df-nf 1784  df-sb 2069  df-mo 2621  df-eu 2653  df-clab 2799  df-cleq 2813  df-clel 2892  df-nfc 2962  df-ne 3016  df-nel 3123  df-ral 3142  df-rex 3143  df-reu 3144  df-rab 3146  df-v 3493  df-sbc 3769  df-csb 3877  df-dif 3932  df-un 3934  df-in 3936  df-ss 3945  df-pss 3947  df-nul 4285  df-if 4461  df-pw 4534  df-sn 4561  df-pr 4563  df-tp 4565  df-op 4567  df-uni 4832  df-int 4870  df-iun 4914  df-br 5060  df-opab 5122  df-mpt 5140  df-tr 5166  df-id 5453  df-eprel 5458  df-po 5467  df-so 5468  df-fr 5507  df-we 5509  df-xp 5554  df-rel 5555  df-cnv 5556  df-co 5557  df-dm 5558  df-rn 5559  df-res 5560  df-ima 5561  df-pred 6141  df-ord 6187  df-on 6188  df-lim 6189  df-suc 6190  df-iota 6307  df-fun 6350  df-fn 6351  df-f 6352  df-f1 6353  df-fo 6354  df-f1o 6355  df-fv 6356  df-ov 7152  df-oprab 7153  df-mpo 7154  df-om 7574  df-1st 7682  df-2nd 7683  df-wrecs 7940  df-recs 8001  df-rdg 8039  df-1o 8095  df-2o 8096  df-map 8401  df-goel 32608  df-gona 32609  df-goal 32610  df-sat 32611  df-fmla 32613
This theorem is referenced by:  satefvfmla1  32693
  Copyright terms: Public domain W3C validator