MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ablsubsub Structured version   Visualization version   GIF version

Theorem ablsubsub 18144
Description: Law for double subtraction. (Contributed by NM, 7-Apr-2015.)
Hypotheses
Ref Expression
ablsubadd.b 𝐵 = (Base‘𝐺)
ablsubadd.p + = (+g𝐺)
ablsubadd.m = (-g𝐺)
ablsubsub.g (𝜑𝐺 ∈ Abel)
ablsubsub.x (𝜑𝑋𝐵)
ablsubsub.y (𝜑𝑌𝐵)
ablsubsub.z (𝜑𝑍𝐵)
Assertion
Ref Expression
ablsubsub (𝜑 → (𝑋 (𝑌 𝑍)) = ((𝑋 𝑌) + 𝑍))

Proof of Theorem ablsubsub
StepHypRef Expression
1 ablsubsub.g . . . 4 (𝜑𝐺 ∈ Abel)
2 ablgrp 18119 . . . 4 (𝐺 ∈ Abel → 𝐺 ∈ Grp)
31, 2syl 17 . . 3 (𝜑𝐺 ∈ Grp)
4 ablsubsub.x . . 3 (𝜑𝑋𝐵)
5 ablsubsub.y . . 3 (𝜑𝑌𝐵)
6 ablsubsub.z . . 3 (𝜑𝑍𝐵)
7 ablsubadd.b . . . 4 𝐵 = (Base‘𝐺)
8 ablsubadd.p . . . 4 + = (+g𝐺)
9 ablsubadd.m . . . 4 = (-g𝐺)
107, 8, 9grpsubsub 17425 . . 3 ((𝐺 ∈ Grp ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → (𝑋 (𝑌 𝑍)) = (𝑋 + (𝑍 𝑌)))
113, 4, 5, 6, 10syl13anc 1325 . 2 (𝜑 → (𝑋 (𝑌 𝑍)) = (𝑋 + (𝑍 𝑌)))
127, 8, 9grpaddsubass 17426 . . 3 ((𝐺 ∈ Grp ∧ (𝑋𝐵𝑍𝐵𝑌𝐵)) → ((𝑋 + 𝑍) 𝑌) = (𝑋 + (𝑍 𝑌)))
133, 4, 6, 5, 12syl13anc 1325 . 2 (𝜑 → ((𝑋 + 𝑍) 𝑌) = (𝑋 + (𝑍 𝑌)))
147, 8, 9abladdsub 18141 . . 3 ((𝐺 ∈ Abel ∧ (𝑋𝐵𝑍𝐵𝑌𝐵)) → ((𝑋 + 𝑍) 𝑌) = ((𝑋 𝑌) + 𝑍))
151, 4, 6, 5, 14syl13anc 1325 . 2 (𝜑 → ((𝑋 + 𝑍) 𝑌) = ((𝑋 𝑌) + 𝑍))
1611, 13, 153eqtr2d 2661 1 (𝜑 → (𝑋 (𝑌 𝑍)) = ((𝑋 𝑌) + 𝑍))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1480  wcel 1987  cfv 5847  (class class class)co 6604  Basecbs 15781  +gcplusg 15862  Grpcgrp 17343  -gcsg 17345  Abelcabl 18115
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-rep 4731  ax-sep 4741  ax-nul 4749  ax-pow 4803  ax-pr 4867  ax-un 6902
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-ral 2912  df-rex 2913  df-reu 2914  df-rmo 2915  df-rab 2916  df-v 3188  df-sbc 3418  df-csb 3515  df-dif 3558  df-un 3560  df-in 3562  df-ss 3569  df-nul 3892  df-if 4059  df-pw 4132  df-sn 4149  df-pr 4151  df-op 4155  df-uni 4403  df-iun 4487  df-br 4614  df-opab 4674  df-mpt 4675  df-id 4989  df-xp 5080  df-rel 5081  df-cnv 5082  df-co 5083  df-dm 5084  df-rn 5085  df-res 5086  df-ima 5087  df-iota 5810  df-fun 5849  df-fn 5850  df-f 5851  df-f1 5852  df-fo 5853  df-f1o 5854  df-fv 5855  df-riota 6565  df-ov 6607  df-oprab 6608  df-mpt2 6609  df-1st 7113  df-2nd 7114  df-0g 16023  df-mgm 17163  df-sgrp 17205  df-mnd 17216  df-grp 17346  df-minusg 17347  df-sbg 17348  df-cmn 18116  df-abl 18117
This theorem is referenced by:  ablsubsub4  18145  ablnncan  18147  ip2subdi  19908
  Copyright terms: Public domain W3C validator