MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ip2subdi Structured version   Visualization version   GIF version

Theorem ip2subdi 20189
Description: Distributive law for inner product subtraction. (Contributed by Mario Carneiro, 8-Oct-2015.)
Hypotheses
Ref Expression
phlsrng.f 𝐹 = (Scalar‘𝑊)
phllmhm.h , = (·𝑖𝑊)
phllmhm.v 𝑉 = (Base‘𝑊)
ipsubdir.m = (-g𝑊)
ipsubdir.s 𝑆 = (-g𝐹)
ip2subdi.p + = (+g𝐹)
ip2subdi.1 (𝜑𝑊 ∈ PreHil)
ip2subdi.2 (𝜑𝐴𝑉)
ip2subdi.3 (𝜑𝐵𝑉)
ip2subdi.4 (𝜑𝐶𝑉)
ip2subdi.5 (𝜑𝐷𝑉)
Assertion
Ref Expression
ip2subdi (𝜑 → ((𝐴 𝐵) , (𝐶 𝐷)) = (((𝐴 , 𝐶) + (𝐵 , 𝐷))𝑆((𝐴 , 𝐷) + (𝐵 , 𝐶))))

Proof of Theorem ip2subdi
StepHypRef Expression
1 eqid 2758 . . . 4 (Base‘𝐹) = (Base‘𝐹)
2 ip2subdi.p . . . 4 + = (+g𝐹)
3 ipsubdir.s . . . 4 𝑆 = (-g𝐹)
4 ip2subdi.1 . . . . . . 7 (𝜑𝑊 ∈ PreHil)
5 phllmod 20175 . . . . . . 7 (𝑊 ∈ PreHil → 𝑊 ∈ LMod)
64, 5syl 17 . . . . . 6 (𝜑𝑊 ∈ LMod)
7 phlsrng.f . . . . . . 7 𝐹 = (Scalar‘𝑊)
87lmodring 19071 . . . . . 6 (𝑊 ∈ LMod → 𝐹 ∈ Ring)
96, 8syl 17 . . . . 5 (𝜑𝐹 ∈ Ring)
10 ringabl 18778 . . . . 5 (𝐹 ∈ Ring → 𝐹 ∈ Abel)
119, 10syl 17 . . . 4 (𝜑𝐹 ∈ Abel)
12 ip2subdi.2 . . . . 5 (𝜑𝐴𝑉)
13 ip2subdi.4 . . . . 5 (𝜑𝐶𝑉)
14 phllmhm.h . . . . . 6 , = (·𝑖𝑊)
15 phllmhm.v . . . . . 6 𝑉 = (Base‘𝑊)
167, 14, 15, 1ipcl 20178 . . . . 5 ((𝑊 ∈ PreHil ∧ 𝐴𝑉𝐶𝑉) → (𝐴 , 𝐶) ∈ (Base‘𝐹))
174, 12, 13, 16syl3anc 1477 . . . 4 (𝜑 → (𝐴 , 𝐶) ∈ (Base‘𝐹))
18 ip2subdi.5 . . . . 5 (𝜑𝐷𝑉)
197, 14, 15, 1ipcl 20178 . . . . 5 ((𝑊 ∈ PreHil ∧ 𝐴𝑉𝐷𝑉) → (𝐴 , 𝐷) ∈ (Base‘𝐹))
204, 12, 18, 19syl3anc 1477 . . . 4 (𝜑 → (𝐴 , 𝐷) ∈ (Base‘𝐹))
21 ip2subdi.3 . . . . 5 (𝜑𝐵𝑉)
227, 14, 15, 1ipcl 20178 . . . . 5 ((𝑊 ∈ PreHil ∧ 𝐵𝑉𝐶𝑉) → (𝐵 , 𝐶) ∈ (Base‘𝐹))
234, 21, 13, 22syl3anc 1477 . . . 4 (𝜑 → (𝐵 , 𝐶) ∈ (Base‘𝐹))
241, 2, 3, 11, 17, 20, 23ablsubsub4 18422 . . 3 (𝜑 → (((𝐴 , 𝐶)𝑆(𝐴 , 𝐷))𝑆(𝐵 , 𝐶)) = ((𝐴 , 𝐶)𝑆((𝐴 , 𝐷) + (𝐵 , 𝐶))))
2524oveq1d 6826 . 2 (𝜑 → ((((𝐴 , 𝐶)𝑆(𝐴 , 𝐷))𝑆(𝐵 , 𝐶)) + (𝐵 , 𝐷)) = (((𝐴 , 𝐶)𝑆((𝐴 , 𝐷) + (𝐵 , 𝐶))) + (𝐵 , 𝐷)))
26 ipsubdir.m . . . . . 6 = (-g𝑊)
2715, 26lmodvsubcl 19108 . . . . 5 ((𝑊 ∈ LMod ∧ 𝐶𝑉𝐷𝑉) → (𝐶 𝐷) ∈ 𝑉)
286, 13, 18, 27syl3anc 1477 . . . 4 (𝜑 → (𝐶 𝐷) ∈ 𝑉)
297, 14, 15, 26, 3ipsubdir 20187 . . . 4 ((𝑊 ∈ PreHil ∧ (𝐴𝑉𝐵𝑉 ∧ (𝐶 𝐷) ∈ 𝑉)) → ((𝐴 𝐵) , (𝐶 𝐷)) = ((𝐴 , (𝐶 𝐷))𝑆(𝐵 , (𝐶 𝐷))))
304, 12, 21, 28, 29syl13anc 1479 . . 3 (𝜑 → ((𝐴 𝐵) , (𝐶 𝐷)) = ((𝐴 , (𝐶 𝐷))𝑆(𝐵 , (𝐶 𝐷))))
317, 14, 15, 26, 3ipsubdi 20188 . . . . 5 ((𝑊 ∈ PreHil ∧ (𝐴𝑉𝐶𝑉𝐷𝑉)) → (𝐴 , (𝐶 𝐷)) = ((𝐴 , 𝐶)𝑆(𝐴 , 𝐷)))
324, 12, 13, 18, 31syl13anc 1479 . . . 4 (𝜑 → (𝐴 , (𝐶 𝐷)) = ((𝐴 , 𝐶)𝑆(𝐴 , 𝐷)))
337, 14, 15, 26, 3ipsubdi 20188 . . . . 5 ((𝑊 ∈ PreHil ∧ (𝐵𝑉𝐶𝑉𝐷𝑉)) → (𝐵 , (𝐶 𝐷)) = ((𝐵 , 𝐶)𝑆(𝐵 , 𝐷)))
344, 21, 13, 18, 33syl13anc 1479 . . . 4 (𝜑 → (𝐵 , (𝐶 𝐷)) = ((𝐵 , 𝐶)𝑆(𝐵 , 𝐷)))
3532, 34oveq12d 6829 . . 3 (𝜑 → ((𝐴 , (𝐶 𝐷))𝑆(𝐵 , (𝐶 𝐷))) = (((𝐴 , 𝐶)𝑆(𝐴 , 𝐷))𝑆((𝐵 , 𝐶)𝑆(𝐵 , 𝐷))))
36 ringgrp 18750 . . . . . 6 (𝐹 ∈ Ring → 𝐹 ∈ Grp)
379, 36syl 17 . . . . 5 (𝜑𝐹 ∈ Grp)
381, 3grpsubcl 17694 . . . . 5 ((𝐹 ∈ Grp ∧ (𝐴 , 𝐶) ∈ (Base‘𝐹) ∧ (𝐴 , 𝐷) ∈ (Base‘𝐹)) → ((𝐴 , 𝐶)𝑆(𝐴 , 𝐷)) ∈ (Base‘𝐹))
3937, 17, 20, 38syl3anc 1477 . . . 4 (𝜑 → ((𝐴 , 𝐶)𝑆(𝐴 , 𝐷)) ∈ (Base‘𝐹))
407, 14, 15, 1ipcl 20178 . . . . 5 ((𝑊 ∈ PreHil ∧ 𝐵𝑉𝐷𝑉) → (𝐵 , 𝐷) ∈ (Base‘𝐹))
414, 21, 18, 40syl3anc 1477 . . . 4 (𝜑 → (𝐵 , 𝐷) ∈ (Base‘𝐹))
421, 2, 3, 11, 39, 23, 41ablsubsub 18421 . . 3 (𝜑 → (((𝐴 , 𝐶)𝑆(𝐴 , 𝐷))𝑆((𝐵 , 𝐶)𝑆(𝐵 , 𝐷))) = ((((𝐴 , 𝐶)𝑆(𝐴 , 𝐷))𝑆(𝐵 , 𝐶)) + (𝐵 , 𝐷)))
4330, 35, 423eqtrd 2796 . 2 (𝜑 → ((𝐴 𝐵) , (𝐶 𝐷)) = ((((𝐴 , 𝐶)𝑆(𝐴 , 𝐷))𝑆(𝐵 , 𝐶)) + (𝐵 , 𝐷)))
441, 2ringacl 18776 . . . 4 ((𝐹 ∈ Ring ∧ (𝐴 , 𝐷) ∈ (Base‘𝐹) ∧ (𝐵 , 𝐶) ∈ (Base‘𝐹)) → ((𝐴 , 𝐷) + (𝐵 , 𝐶)) ∈ (Base‘𝐹))
459, 20, 23, 44syl3anc 1477 . . 3 (𝜑 → ((𝐴 , 𝐷) + (𝐵 , 𝐶)) ∈ (Base‘𝐹))
461, 2, 3abladdsub 18418 . . 3 ((𝐹 ∈ Abel ∧ ((𝐴 , 𝐶) ∈ (Base‘𝐹) ∧ (𝐵 , 𝐷) ∈ (Base‘𝐹) ∧ ((𝐴 , 𝐷) + (𝐵 , 𝐶)) ∈ (Base‘𝐹))) → (((𝐴 , 𝐶) + (𝐵 , 𝐷))𝑆((𝐴 , 𝐷) + (𝐵 , 𝐶))) = (((𝐴 , 𝐶)𝑆((𝐴 , 𝐷) + (𝐵 , 𝐶))) + (𝐵 , 𝐷)))
4711, 17, 41, 45, 46syl13anc 1479 . 2 (𝜑 → (((𝐴 , 𝐶) + (𝐵 , 𝐷))𝑆((𝐴 , 𝐷) + (𝐵 , 𝐶))) = (((𝐴 , 𝐶)𝑆((𝐴 , 𝐷) + (𝐵 , 𝐶))) + (𝐵 , 𝐷)))
4825, 43, 473eqtr4d 2802 1 (𝜑 → ((𝐴 𝐵) , (𝐶 𝐷)) = (((𝐴 , 𝐶) + (𝐵 , 𝐷))𝑆((𝐴 , 𝐷) + (𝐵 , 𝐶))))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1630  wcel 2137  cfv 6047  (class class class)co 6811  Basecbs 16057  +gcplusg 16141  Scalarcsca 16144  ·𝑖cip 16146  Grpcgrp 17621  -gcsg 17623  Abelcabl 18392  Ringcrg 18745  LModclmod 19063  PreHilcphl 20169
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1869  ax-4 1884  ax-5 1986  ax-6 2052  ax-7 2088  ax-8 2139  ax-9 2146  ax-10 2166  ax-11 2181  ax-12 2194  ax-13 2389  ax-ext 2738  ax-rep 4921  ax-sep 4931  ax-nul 4939  ax-pow 4990  ax-pr 5053  ax-un 7112  ax-cnex 10182  ax-resscn 10183  ax-1cn 10184  ax-icn 10185  ax-addcl 10186  ax-addrcl 10187  ax-mulcl 10188  ax-mulrcl 10189  ax-mulcom 10190  ax-addass 10191  ax-mulass 10192  ax-distr 10193  ax-i2m1 10194  ax-1ne0 10195  ax-1rid 10196  ax-rnegex 10197  ax-rrecex 10198  ax-cnre 10199  ax-pre-lttri 10200  ax-pre-lttrn 10201  ax-pre-ltadd 10202  ax-pre-mulgt0 10203
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1073  df-3an 1074  df-tru 1633  df-ex 1852  df-nf 1857  df-sb 2045  df-eu 2609  df-mo 2610  df-clab 2745  df-cleq 2751  df-clel 2754  df-nfc 2889  df-ne 2931  df-nel 3034  df-ral 3053  df-rex 3054  df-reu 3055  df-rmo 3056  df-rab 3057  df-v 3340  df-sbc 3575  df-csb 3673  df-dif 3716  df-un 3718  df-in 3720  df-ss 3727  df-pss 3729  df-nul 4057  df-if 4229  df-pw 4302  df-sn 4320  df-pr 4322  df-tp 4324  df-op 4326  df-uni 4587  df-iun 4672  df-br 4803  df-opab 4863  df-mpt 4880  df-tr 4903  df-id 5172  df-eprel 5177  df-po 5185  df-so 5186  df-fr 5223  df-we 5225  df-xp 5270  df-rel 5271  df-cnv 5272  df-co 5273  df-dm 5274  df-rn 5275  df-res 5276  df-ima 5277  df-pred 5839  df-ord 5885  df-on 5886  df-lim 5887  df-suc 5888  df-iota 6010  df-fun 6049  df-fn 6050  df-f 6051  df-f1 6052  df-fo 6053  df-f1o 6054  df-fv 6055  df-riota 6772  df-ov 6814  df-oprab 6815  df-mpt2 6816  df-om 7229  df-1st 7331  df-2nd 7332  df-tpos 7519  df-wrecs 7574  df-recs 7635  df-rdg 7673  df-er 7909  df-map 8023  df-en 8120  df-dom 8121  df-sdom 8122  df-pnf 10266  df-mnf 10267  df-xr 10268  df-ltxr 10269  df-le 10270  df-sub 10458  df-neg 10459  df-nn 11211  df-2 11269  df-3 11270  df-4 11271  df-5 11272  df-6 11273  df-7 11274  df-8 11275  df-ndx 16060  df-slot 16061  df-base 16063  df-sets 16064  df-plusg 16154  df-mulr 16155  df-sca 16157  df-vsca 16158  df-ip 16159  df-0g 16302  df-mgm 17441  df-sgrp 17483  df-mnd 17494  df-mhm 17534  df-grp 17624  df-minusg 17625  df-sbg 17626  df-ghm 17857  df-cmn 18393  df-abl 18394  df-mgp 18688  df-ur 18700  df-ring 18747  df-oppr 18821  df-rnghom 18915  df-staf 19045  df-srng 19046  df-lmod 19065  df-lmhm 19222  df-lvec 19303  df-sra 19372  df-rgmod 19373  df-phl 20171
This theorem is referenced by:  cph2subdi  23208  ipcau2  23231  tchcphlem1  23232
  Copyright terms: Public domain W3C validator