MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  arwlid Structured version   Visualization version   GIF version

Theorem arwlid 17332
Description: Left identity of a category using arrow notation. (Contributed by Mario Carneiro, 11-Jan-2017.)
Hypotheses
Ref Expression
arwlid.h 𝐻 = (Homa𝐶)
arwlid.o · = (compa𝐶)
arwlid.a 1 = (Ida𝐶)
arwlid.f (𝜑𝐹 ∈ (𝑋𝐻𝑌))
Assertion
Ref Expression
arwlid (𝜑 → (( 1𝑌) · 𝐹) = 𝐹)

Proof of Theorem arwlid
StepHypRef Expression
1 arwlid.a . . . . . 6 1 = (Ida𝐶)
2 eqid 2821 . . . . . 6 (Base‘𝐶) = (Base‘𝐶)
3 arwlid.f . . . . . . 7 (𝜑𝐹 ∈ (𝑋𝐻𝑌))
4 arwlid.h . . . . . . . 8 𝐻 = (Homa𝐶)
54homarcl 17288 . . . . . . 7 (𝐹 ∈ (𝑋𝐻𝑌) → 𝐶 ∈ Cat)
63, 5syl 17 . . . . . 6 (𝜑𝐶 ∈ Cat)
7 eqid 2821 . . . . . 6 (Id‘𝐶) = (Id‘𝐶)
84, 2homarcl2 17295 . . . . . . . 8 (𝐹 ∈ (𝑋𝐻𝑌) → (𝑋 ∈ (Base‘𝐶) ∧ 𝑌 ∈ (Base‘𝐶)))
93, 8syl 17 . . . . . . 7 (𝜑 → (𝑋 ∈ (Base‘𝐶) ∧ 𝑌 ∈ (Base‘𝐶)))
109simprd 498 . . . . . 6 (𝜑𝑌 ∈ (Base‘𝐶))
111, 2, 6, 7, 10ida2 17319 . . . . 5 (𝜑 → (2nd ‘( 1𝑌)) = ((Id‘𝐶)‘𝑌))
1211oveq1d 7171 . . . 4 (𝜑 → ((2nd ‘( 1𝑌))(⟨𝑋, 𝑌⟩(comp‘𝐶)𝑌)(2nd𝐹)) = (((Id‘𝐶)‘𝑌)(⟨𝑋, 𝑌⟩(comp‘𝐶)𝑌)(2nd𝐹)))
13 eqid 2821 . . . . 5 (Hom ‘𝐶) = (Hom ‘𝐶)
149simpld 497 . . . . 5 (𝜑𝑋 ∈ (Base‘𝐶))
15 eqid 2821 . . . . 5 (comp‘𝐶) = (comp‘𝐶)
164, 13homahom 17299 . . . . . 6 (𝐹 ∈ (𝑋𝐻𝑌) → (2nd𝐹) ∈ (𝑋(Hom ‘𝐶)𝑌))
173, 16syl 17 . . . . 5 (𝜑 → (2nd𝐹) ∈ (𝑋(Hom ‘𝐶)𝑌))
182, 13, 7, 6, 14, 15, 10, 17catlid 16954 . . . 4 (𝜑 → (((Id‘𝐶)‘𝑌)(⟨𝑋, 𝑌⟩(comp‘𝐶)𝑌)(2nd𝐹)) = (2nd𝐹))
1912, 18eqtrd 2856 . . 3 (𝜑 → ((2nd ‘( 1𝑌))(⟨𝑋, 𝑌⟩(comp‘𝐶)𝑌)(2nd𝐹)) = (2nd𝐹))
2019oteq3d 4817 . 2 (𝜑 → ⟨𝑋, 𝑌, ((2nd ‘( 1𝑌))(⟨𝑋, 𝑌⟩(comp‘𝐶)𝑌)(2nd𝐹))⟩ = ⟨𝑋, 𝑌, (2nd𝐹)⟩)
21 arwlid.o . . 3 · = (compa𝐶)
221, 2, 6, 10, 4idahom 17320 . . 3 (𝜑 → ( 1𝑌) ∈ (𝑌𝐻𝑌))
2321, 4, 3, 22, 15coaval 17328 . 2 (𝜑 → (( 1𝑌) · 𝐹) = ⟨𝑋, 𝑌, ((2nd ‘( 1𝑌))(⟨𝑋, 𝑌⟩(comp‘𝐶)𝑌)(2nd𝐹))⟩)
244homadmcd 17302 . . 3 (𝐹 ∈ (𝑋𝐻𝑌) → 𝐹 = ⟨𝑋, 𝑌, (2nd𝐹)⟩)
253, 24syl 17 . 2 (𝜑𝐹 = ⟨𝑋, 𝑌, (2nd𝐹)⟩)
2620, 23, 253eqtr4d 2866 1 (𝜑 → (( 1𝑌) · 𝐹) = 𝐹)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398   = wceq 1537  wcel 2114  cop 4573  cotp 4575  cfv 6355  (class class class)co 7156  2nd c2nd 7688  Basecbs 16483  Hom chom 16576  compcco 16577  Catccat 16935  Idccid 16936  Homachoma 17283  Idacida 17313  compaccoa 17314
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2793  ax-rep 5190  ax-sep 5203  ax-nul 5210  ax-pow 5266  ax-pr 5330  ax-un 7461
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3496  df-sbc 3773  df-csb 3884  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4568  df-pr 4570  df-op 4574  df-ot 4576  df-uni 4839  df-iun 4921  df-br 5067  df-opab 5129  df-mpt 5147  df-id 5460  df-xp 5561  df-rel 5562  df-cnv 5563  df-co 5564  df-dm 5565  df-rn 5566  df-res 5567  df-ima 5568  df-iota 6314  df-fun 6357  df-fn 6358  df-f 6359  df-f1 6360  df-fo 6361  df-f1o 6362  df-fv 6363  df-riota 7114  df-ov 7159  df-oprab 7160  df-mpo 7161  df-1st 7689  df-2nd 7690  df-cat 16939  df-cid 16940  df-doma 17284  df-coda 17285  df-homa 17286  df-arw 17287  df-ida 17315  df-coa 17316
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator