Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  difmapsn Structured version   Visualization version   GIF version

Theorem difmapsn 41495
Description: Difference of two sets exponentiatiated to a singleton. (Contributed by Glauco Siliprandi, 3-Mar-2021.)
Hypotheses
Ref Expression
difmapsn.a (𝜑𝐴𝑉)
difmapsn.b (𝜑𝐵𝑊)
difmapsn.v (𝜑𝐶𝑍)
Assertion
Ref Expression
difmapsn (𝜑 → ((𝐴m {𝐶}) ∖ (𝐵m {𝐶})) = ((𝐴𝐵) ↑m {𝐶}))

Proof of Theorem difmapsn
Dummy variable 𝑓 is distinct from all other variables.
StepHypRef Expression
1 eldifi 4103 . . . . . . . . . 10 (𝑓 ∈ ((𝐴m {𝐶}) ∖ (𝐵m {𝐶})) → 𝑓 ∈ (𝐴m {𝐶}))
21adantl 484 . . . . . . . . 9 ((𝜑𝑓 ∈ ((𝐴m {𝐶}) ∖ (𝐵m {𝐶}))) → 𝑓 ∈ (𝐴m {𝐶}))
3 elmapi 8428 . . . . . . . . . . . 12 (𝑓 ∈ (𝐴m {𝐶}) → 𝑓:{𝐶}⟶𝐴)
43adantl 484 . . . . . . . . . . 11 ((𝜑𝑓 ∈ (𝐴m {𝐶})) → 𝑓:{𝐶}⟶𝐴)
5 difmapsn.v . . . . . . . . . . . . 13 (𝜑𝐶𝑍)
6 fsn2g 6900 . . . . . . . . . . . . 13 (𝐶𝑍 → (𝑓:{𝐶}⟶𝐴 ↔ ((𝑓𝐶) ∈ 𝐴𝑓 = {⟨𝐶, (𝑓𝐶)⟩})))
75, 6syl 17 . . . . . . . . . . . 12 (𝜑 → (𝑓:{𝐶}⟶𝐴 ↔ ((𝑓𝐶) ∈ 𝐴𝑓 = {⟨𝐶, (𝑓𝐶)⟩})))
87adantr 483 . . . . . . . . . . 11 ((𝜑𝑓 ∈ (𝐴m {𝐶})) → (𝑓:{𝐶}⟶𝐴 ↔ ((𝑓𝐶) ∈ 𝐴𝑓 = {⟨𝐶, (𝑓𝐶)⟩})))
94, 8mpbid 234 . . . . . . . . . 10 ((𝜑𝑓 ∈ (𝐴m {𝐶})) → ((𝑓𝐶) ∈ 𝐴𝑓 = {⟨𝐶, (𝑓𝐶)⟩}))
109simpld 497 . . . . . . . . 9 ((𝜑𝑓 ∈ (𝐴m {𝐶})) → (𝑓𝐶) ∈ 𝐴)
112, 10syldan 593 . . . . . . . 8 ((𝜑𝑓 ∈ ((𝐴m {𝐶}) ∖ (𝐵m {𝐶}))) → (𝑓𝐶) ∈ 𝐴)
12 simpr 487 . . . . . . . . . . . 12 (((𝜑𝑓 ∈ ((𝐴m {𝐶}) ∖ (𝐵m {𝐶}))) ∧ (𝑓𝐶) ∈ 𝐵) → (𝑓𝐶) ∈ 𝐵)
139simprd 498 . . . . . . . . . . . . . 14 ((𝜑𝑓 ∈ (𝐴m {𝐶})) → 𝑓 = {⟨𝐶, (𝑓𝐶)⟩})
142, 13syldan 593 . . . . . . . . . . . . 13 ((𝜑𝑓 ∈ ((𝐴m {𝐶}) ∖ (𝐵m {𝐶}))) → 𝑓 = {⟨𝐶, (𝑓𝐶)⟩})
1514adantr 483 . . . . . . . . . . . 12 (((𝜑𝑓 ∈ ((𝐴m {𝐶}) ∖ (𝐵m {𝐶}))) ∧ (𝑓𝐶) ∈ 𝐵) → 𝑓 = {⟨𝐶, (𝑓𝐶)⟩})
1612, 15jca 514 . . . . . . . . . . 11 (((𝜑𝑓 ∈ ((𝐴m {𝐶}) ∖ (𝐵m {𝐶}))) ∧ (𝑓𝐶) ∈ 𝐵) → ((𝑓𝐶) ∈ 𝐵𝑓 = {⟨𝐶, (𝑓𝐶)⟩}))
17 fsn2g 6900 . . . . . . . . . . . . 13 (𝐶𝑍 → (𝑓:{𝐶}⟶𝐵 ↔ ((𝑓𝐶) ∈ 𝐵𝑓 = {⟨𝐶, (𝑓𝐶)⟩})))
185, 17syl 17 . . . . . . . . . . . 12 (𝜑 → (𝑓:{𝐶}⟶𝐵 ↔ ((𝑓𝐶) ∈ 𝐵𝑓 = {⟨𝐶, (𝑓𝐶)⟩})))
1918ad2antrr 724 . . . . . . . . . . 11 (((𝜑𝑓 ∈ ((𝐴m {𝐶}) ∖ (𝐵m {𝐶}))) ∧ (𝑓𝐶) ∈ 𝐵) → (𝑓:{𝐶}⟶𝐵 ↔ ((𝑓𝐶) ∈ 𝐵𝑓 = {⟨𝐶, (𝑓𝐶)⟩})))
2016, 19mpbird 259 . . . . . . . . . 10 (((𝜑𝑓 ∈ ((𝐴m {𝐶}) ∖ (𝐵m {𝐶}))) ∧ (𝑓𝐶) ∈ 𝐵) → 𝑓:{𝐶}⟶𝐵)
21 difmapsn.b . . . . . . . . . . . 12 (𝜑𝐵𝑊)
2221ad2antrr 724 . . . . . . . . . . 11 (((𝜑𝑓 ∈ ((𝐴m {𝐶}) ∖ (𝐵m {𝐶}))) ∧ (𝑓𝐶) ∈ 𝐵) → 𝐵𝑊)
23 snex 5332 . . . . . . . . . . . 12 {𝐶} ∈ V
2423a1i 11 . . . . . . . . . . 11 (((𝜑𝑓 ∈ ((𝐴m {𝐶}) ∖ (𝐵m {𝐶}))) ∧ (𝑓𝐶) ∈ 𝐵) → {𝐶} ∈ V)
2522, 24elmapd 8420 . . . . . . . . . 10 (((𝜑𝑓 ∈ ((𝐴m {𝐶}) ∖ (𝐵m {𝐶}))) ∧ (𝑓𝐶) ∈ 𝐵) → (𝑓 ∈ (𝐵m {𝐶}) ↔ 𝑓:{𝐶}⟶𝐵))
2620, 25mpbird 259 . . . . . . . . 9 (((𝜑𝑓 ∈ ((𝐴m {𝐶}) ∖ (𝐵m {𝐶}))) ∧ (𝑓𝐶) ∈ 𝐵) → 𝑓 ∈ (𝐵m {𝐶}))
27 eldifn 4104 . . . . . . . . . 10 (𝑓 ∈ ((𝐴m {𝐶}) ∖ (𝐵m {𝐶})) → ¬ 𝑓 ∈ (𝐵m {𝐶}))
2827ad2antlr 725 . . . . . . . . 9 (((𝜑𝑓 ∈ ((𝐴m {𝐶}) ∖ (𝐵m {𝐶}))) ∧ (𝑓𝐶) ∈ 𝐵) → ¬ 𝑓 ∈ (𝐵m {𝐶}))
2926, 28pm2.65da 815 . . . . . . . 8 ((𝜑𝑓 ∈ ((𝐴m {𝐶}) ∖ (𝐵m {𝐶}))) → ¬ (𝑓𝐶) ∈ 𝐵)
3011, 29eldifd 3947 . . . . . . 7 ((𝜑𝑓 ∈ ((𝐴m {𝐶}) ∖ (𝐵m {𝐶}))) → (𝑓𝐶) ∈ (𝐴𝐵))
3130, 14jca 514 . . . . . 6 ((𝜑𝑓 ∈ ((𝐴m {𝐶}) ∖ (𝐵m {𝐶}))) → ((𝑓𝐶) ∈ (𝐴𝐵) ∧ 𝑓 = {⟨𝐶, (𝑓𝐶)⟩}))
32 fsn2g 6900 . . . . . . . 8 (𝐶𝑍 → (𝑓:{𝐶}⟶(𝐴𝐵) ↔ ((𝑓𝐶) ∈ (𝐴𝐵) ∧ 𝑓 = {⟨𝐶, (𝑓𝐶)⟩})))
335, 32syl 17 . . . . . . 7 (𝜑 → (𝑓:{𝐶}⟶(𝐴𝐵) ↔ ((𝑓𝐶) ∈ (𝐴𝐵) ∧ 𝑓 = {⟨𝐶, (𝑓𝐶)⟩})))
3433adantr 483 . . . . . 6 ((𝜑𝑓 ∈ ((𝐴m {𝐶}) ∖ (𝐵m {𝐶}))) → (𝑓:{𝐶}⟶(𝐴𝐵) ↔ ((𝑓𝐶) ∈ (𝐴𝐵) ∧ 𝑓 = {⟨𝐶, (𝑓𝐶)⟩})))
3531, 34mpbird 259 . . . . 5 ((𝜑𝑓 ∈ ((𝐴m {𝐶}) ∖ (𝐵m {𝐶}))) → 𝑓:{𝐶}⟶(𝐴𝐵))
36 difmapsn.a . . . . . . . 8 (𝜑𝐴𝑉)
37 difssd 4109 . . . . . . . 8 (𝜑 → (𝐴𝐵) ⊆ 𝐴)
3836, 37ssexd 5228 . . . . . . 7 (𝜑 → (𝐴𝐵) ∈ V)
3923a1i 11 . . . . . . 7 (𝜑 → {𝐶} ∈ V)
4038, 39elmapd 8420 . . . . . 6 (𝜑 → (𝑓 ∈ ((𝐴𝐵) ↑m {𝐶}) ↔ 𝑓:{𝐶}⟶(𝐴𝐵)))
4140adantr 483 . . . . 5 ((𝜑𝑓 ∈ ((𝐴m {𝐶}) ∖ (𝐵m {𝐶}))) → (𝑓 ∈ ((𝐴𝐵) ↑m {𝐶}) ↔ 𝑓:{𝐶}⟶(𝐴𝐵)))
4235, 41mpbird 259 . . . 4 ((𝜑𝑓 ∈ ((𝐴m {𝐶}) ∖ (𝐵m {𝐶}))) → 𝑓 ∈ ((𝐴𝐵) ↑m {𝐶}))
4342ralrimiva 3182 . . 3 (𝜑 → ∀𝑓 ∈ ((𝐴m {𝐶}) ∖ (𝐵m {𝐶}))𝑓 ∈ ((𝐴𝐵) ↑m {𝐶}))
44 dfss3 3956 . . 3 (((𝐴m {𝐶}) ∖ (𝐵m {𝐶})) ⊆ ((𝐴𝐵) ↑m {𝐶}) ↔ ∀𝑓 ∈ ((𝐴m {𝐶}) ∖ (𝐵m {𝐶}))𝑓 ∈ ((𝐴𝐵) ↑m {𝐶}))
4543, 44sylibr 236 . 2 (𝜑 → ((𝐴m {𝐶}) ∖ (𝐵m {𝐶})) ⊆ ((𝐴𝐵) ↑m {𝐶}))
465snn0d 41369 . . 3 (𝜑 → {𝐶} ≠ ∅)
4736, 21, 39, 46difmap 41490 . 2 (𝜑 → ((𝐴𝐵) ↑m {𝐶}) ⊆ ((𝐴m {𝐶}) ∖ (𝐵m {𝐶})))
4845, 47eqssd 3984 1 (𝜑 → ((𝐴m {𝐶}) ∖ (𝐵m {𝐶})) = ((𝐴𝐵) ↑m {𝐶}))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 208  wa 398   = wceq 1537  wcel 2114  wral 3138  Vcvv 3494  cdif 3933  wss 3936  {csn 4567  cop 4573  wf 6351  cfv 6355  (class class class)co 7156  m cmap 8406
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2793  ax-sep 5203  ax-nul 5210  ax-pow 5266  ax-pr 5330  ax-un 7461
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-ral 3143  df-rex 3144  df-reu 3145  df-rab 3147  df-v 3496  df-sbc 3773  df-csb 3884  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4568  df-pr 4570  df-op 4574  df-uni 4839  df-iun 4921  df-br 5067  df-opab 5129  df-mpt 5147  df-id 5460  df-xp 5561  df-rel 5562  df-cnv 5563  df-co 5564  df-dm 5565  df-rn 5566  df-res 5567  df-ima 5568  df-iota 6314  df-fun 6357  df-fn 6358  df-f 6359  df-f1 6360  df-fo 6361  df-f1o 6362  df-fv 6363  df-ov 7159  df-oprab 7160  df-mpo 7161  df-1st 7689  df-2nd 7690  df-map 8408
This theorem is referenced by:  vonvolmbllem  42962  vonvolmbl  42963
  Copyright terms: Public domain W3C validator