Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  elrnmptd Structured version   Visualization version   GIF version

Theorem elrnmptd 38837
Description: The range of a function in maps-to notation. (Contributed by Glauco Siliprandi, 17-Aug-2020.)
Hypotheses
Ref Expression
elrnmptd.f 𝐹 = (𝑥𝐴𝐵)
elrnmptd.x (𝜑 → ∃𝑥𝐴 𝐶 = 𝐵)
elrnmptd.c (𝜑𝐶𝑉)
Assertion
Ref Expression
elrnmptd (𝜑𝐶 ∈ ran 𝐹)
Distinct variable group:   𝑥,𝐶
Allowed substitution hints:   𝜑(𝑥)   𝐴(𝑥)   𝐵(𝑥)   𝐹(𝑥)   𝑉(𝑥)

Proof of Theorem elrnmptd
StepHypRef Expression
1 elrnmptd.x . 2 (𝜑 → ∃𝑥𝐴 𝐶 = 𝐵)
2 elrnmptd.c . . 3 (𝜑𝐶𝑉)
3 elrnmptd.f . . . 4 𝐹 = (𝑥𝐴𝐵)
43elrnmpt 5332 . . 3 (𝐶𝑉 → (𝐶 ∈ ran 𝐹 ↔ ∃𝑥𝐴 𝐶 = 𝐵))
52, 4syl 17 . 2 (𝜑 → (𝐶 ∈ ran 𝐹 ↔ ∃𝑥𝐴 𝐶 = 𝐵))
61, 5mpbird 247 1 (𝜑𝐶 ∈ ran 𝐹)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196   = wceq 1480  wcel 1987  wrex 2908  cmpt 4673  ran crn 5075
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-sep 4741  ax-nul 4749  ax-pr 4867
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-rex 2913  df-rab 2916  df-v 3188  df-dif 3558  df-un 3560  df-in 3562  df-ss 3569  df-nul 3892  df-if 4059  df-sn 4149  df-pr 4151  df-op 4155  df-br 4614  df-opab 4674  df-mpt 4675  df-cnv 5082  df-dm 5084  df-rn 5085
This theorem is referenced by:  infnsuprnmpt  38938  sge0sup  39912  sge0resplit  39927  sge0xaddlem2  39955  sge0pnfmpt  39966  sge0reuz  39968  sge0reuzb  39969  hoidmvlelem2  40114
  Copyright terms: Public domain W3C validator