Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sge0resplit Structured version   Visualization version   GIF version

Theorem sge0resplit 39930
Description: Σ^ splits into two parts, when it's a real number. This is a special case of sge0split 39933. (Contributed by Glauco Siliprandi, 17-Aug-2020.)
Hypotheses
Ref Expression
sge0resplit.a (𝜑𝐴𝑉)
sge0resplit.b (𝜑𝐵𝑊)
sge0resplit.u 𝑈 = (𝐴𝐵)
sge0resplit.in0 (𝜑 → (𝐴𝐵) = ∅)
sge0resplit.f (𝜑𝐹:𝑈⟶(0[,]+∞))
sge0resplit.re (𝜑 → (Σ^𝐹) ∈ ℝ)
Assertion
Ref Expression
sge0resplit (𝜑 → (Σ^𝐹) = ((Σ^‘(𝐹𝐴)) + (Σ^‘(𝐹𝐵))))

Proof of Theorem sge0resplit
Dummy variables 𝑎 𝑏 𝑟 𝑢 𝑣 𝑥 𝑦 𝑡 𝑤 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 sge0resplit.a . . . . . . 7 (𝜑𝐴𝑉)
2 sge0resplit.f . . . . . . . 8 (𝜑𝐹:𝑈⟶(0[,]+∞))
3 ssun1 3754 . . . . . . . . . 10 𝐴 ⊆ (𝐴𝐵)
4 sge0resplit.u . . . . . . . . . . 11 𝑈 = (𝐴𝐵)
54eqcomi 2630 . . . . . . . . . 10 (𝐴𝐵) = 𝑈
63, 5sseqtri 3616 . . . . . . . . 9 𝐴𝑈
76a1i 11 . . . . . . . 8 (𝜑𝐴𝑈)
82, 7fssresd 6028 . . . . . . 7 (𝜑 → (𝐹𝐴):𝐴⟶(0[,]+∞))
94a1i 11 . . . . . . . . 9 (𝜑𝑈 = (𝐴𝐵))
10 sge0resplit.b . . . . . . . . . 10 (𝜑𝐵𝑊)
11 unexg 6912 . . . . . . . . . 10 ((𝐴𝑉𝐵𝑊) → (𝐴𝐵) ∈ V)
121, 10, 11syl2anc 692 . . . . . . . . 9 (𝜑 → (𝐴𝐵) ∈ V)
139, 12eqeltrd 2698 . . . . . . . 8 (𝜑𝑈 ∈ V)
14 sge0resplit.re . . . . . . . 8 (𝜑 → (Σ^𝐹) ∈ ℝ)
1513, 2, 14sge0ssre 39921 . . . . . . 7 (𝜑 → (Σ^‘(𝐹𝐴)) ∈ ℝ)
161, 8, 15sge0supre 39913 . . . . . 6 (𝜑 → (Σ^‘(𝐹𝐴)) = sup(ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑦𝑥 ((𝐹𝐴)‘𝑦)), ℝ, < ))
1716, 15eqeltrrd 2699 . . . . 5 (𝜑 → sup(ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑦𝑥 ((𝐹𝐴)‘𝑦)), ℝ, < ) ∈ ℝ)
18 ssun2 3755 . . . . . . . . . 10 𝐵 ⊆ (𝐴𝐵)
1918, 5sseqtri 3616 . . . . . . . . 9 𝐵𝑈
2019a1i 11 . . . . . . . 8 (𝜑𝐵𝑈)
212, 20fssresd 6028 . . . . . . 7 (𝜑 → (𝐹𝐵):𝐵⟶(0[,]+∞))
2213, 2, 14sge0ssre 39921 . . . . . . 7 (𝜑 → (Σ^‘(𝐹𝐵)) ∈ ℝ)
2310, 21, 22sge0supre 39913 . . . . . 6 (𝜑 → (Σ^‘(𝐹𝐵)) = sup(ran (𝑥 ∈ (𝒫 𝐵 ∩ Fin) ↦ Σ𝑦𝑥 ((𝐹𝐵)‘𝑦)), ℝ, < ))
2423, 22eqeltrrd 2699 . . . . 5 (𝜑 → sup(ran (𝑥 ∈ (𝒫 𝐵 ∩ Fin) ↦ Σ𝑦𝑥 ((𝐹𝐵)‘𝑦)), ℝ, < ) ∈ ℝ)
25 rexadd 12006 . . . . 5 ((sup(ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑦𝑥 ((𝐹𝐴)‘𝑦)), ℝ, < ) ∈ ℝ ∧ sup(ran (𝑥 ∈ (𝒫 𝐵 ∩ Fin) ↦ Σ𝑦𝑥 ((𝐹𝐵)‘𝑦)), ℝ, < ) ∈ ℝ) → (sup(ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑦𝑥 ((𝐹𝐴)‘𝑦)), ℝ, < ) +𝑒 sup(ran (𝑥 ∈ (𝒫 𝐵 ∩ Fin) ↦ Σ𝑦𝑥 ((𝐹𝐵)‘𝑦)), ℝ, < )) = (sup(ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑦𝑥 ((𝐹𝐴)‘𝑦)), ℝ, < ) + sup(ran (𝑥 ∈ (𝒫 𝐵 ∩ Fin) ↦ Σ𝑦𝑥 ((𝐹𝐵)‘𝑦)), ℝ, < )))
2617, 24, 25syl2anc 692 . . . 4 (𝜑 → (sup(ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑦𝑥 ((𝐹𝐴)‘𝑦)), ℝ, < ) +𝑒 sup(ran (𝑥 ∈ (𝒫 𝐵 ∩ Fin) ↦ Σ𝑦𝑥 ((𝐹𝐵)‘𝑦)), ℝ, < )) = (sup(ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑦𝑥 ((𝐹𝐴)‘𝑦)), ℝ, < ) + sup(ran (𝑥 ∈ (𝒫 𝐵 ∩ Fin) ↦ Σ𝑦𝑥 ((𝐹𝐵)‘𝑦)), ℝ, < )))
2713, 2, 14sge0rern 39912 . . . . . . . 8 (𝜑 → ¬ +∞ ∈ ran 𝐹)
28 nelrnres 38848 . . . . . . . 8 (¬ +∞ ∈ ran 𝐹 → ¬ +∞ ∈ ran (𝐹𝐴))
2927, 28syl 17 . . . . . . 7 (𝜑 → ¬ +∞ ∈ ran (𝐹𝐴))
308, 29fge0iccico 39894 . . . . . 6 (𝜑 → (𝐹𝐴):𝐴⟶(0[,)+∞))
3130sge0rnre 39888 . . . . 5 (𝜑 → ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑦𝑥 ((𝐹𝐴)‘𝑦)) ⊆ ℝ)
32 sge0rnn0 39892 . . . . . 6 ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑦𝑥 ((𝐹𝐴)‘𝑦)) ≠ ∅
3332a1i 11 . . . . 5 (𝜑 → ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑦𝑥 ((𝐹𝐴)‘𝑦)) ≠ ∅)
341, 30sge0reval 39896 . . . . . . . 8 (𝜑 → (Σ^‘(𝐹𝐴)) = sup(ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑦𝑥 ((𝐹𝐴)‘𝑦)), ℝ*, < ))
3534eqcomd 2627 . . . . . . 7 (𝜑 → sup(ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑦𝑥 ((𝐹𝐴)‘𝑦)), ℝ*, < ) = (Σ^‘(𝐹𝐴)))
3635, 15eqeltrd 2698 . . . . . 6 (𝜑 → sup(ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑦𝑥 ((𝐹𝐴)‘𝑦)), ℝ*, < ) ∈ ℝ)
37 supxrre3 39005 . . . . . . 7 ((ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑦𝑥 ((𝐹𝐴)‘𝑦)) ⊆ ℝ ∧ ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑦𝑥 ((𝐹𝐴)‘𝑦)) ≠ ∅) → (sup(ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑦𝑥 ((𝐹𝐴)‘𝑦)), ℝ*, < ) ∈ ℝ ↔ ∃𝑤 ∈ ℝ ∀𝑡 ∈ ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑦𝑥 ((𝐹𝐴)‘𝑦))𝑡𝑤))
3831, 33, 37syl2anc 692 . . . . . 6 (𝜑 → (sup(ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑦𝑥 ((𝐹𝐴)‘𝑦)), ℝ*, < ) ∈ ℝ ↔ ∃𝑤 ∈ ℝ ∀𝑡 ∈ ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑦𝑥 ((𝐹𝐴)‘𝑦))𝑡𝑤))
3936, 38mpbid 222 . . . . 5 (𝜑 → ∃𝑤 ∈ ℝ ∀𝑡 ∈ ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑦𝑥 ((𝐹𝐴)‘𝑦))𝑡𝑤)
40 nelrnres 38848 . . . . . . . 8 (¬ +∞ ∈ ran 𝐹 → ¬ +∞ ∈ ran (𝐹𝐵))
4127, 40syl 17 . . . . . . 7 (𝜑 → ¬ +∞ ∈ ran (𝐹𝐵))
4221, 41fge0iccico 39894 . . . . . 6 (𝜑 → (𝐹𝐵):𝐵⟶(0[,)+∞))
4342sge0rnre 39888 . . . . 5 (𝜑 → ran (𝑥 ∈ (𝒫 𝐵 ∩ Fin) ↦ Σ𝑦𝑥 ((𝐹𝐵)‘𝑦)) ⊆ ℝ)
44 sge0rnn0 39892 . . . . . 6 ran (𝑥 ∈ (𝒫 𝐵 ∩ Fin) ↦ Σ𝑦𝑥 ((𝐹𝐵)‘𝑦)) ≠ ∅
4544a1i 11 . . . . 5 (𝜑 → ran (𝑥 ∈ (𝒫 𝐵 ∩ Fin) ↦ Σ𝑦𝑥 ((𝐹𝐵)‘𝑦)) ≠ ∅)
4610, 42sge0reval 39896 . . . . . . . 8 (𝜑 → (Σ^‘(𝐹𝐵)) = sup(ran (𝑥 ∈ (𝒫 𝐵 ∩ Fin) ↦ Σ𝑦𝑥 ((𝐹𝐵)‘𝑦)), ℝ*, < ))
4746eqcomd 2627 . . . . . . 7 (𝜑 → sup(ran (𝑥 ∈ (𝒫 𝐵 ∩ Fin) ↦ Σ𝑦𝑥 ((𝐹𝐵)‘𝑦)), ℝ*, < ) = (Σ^‘(𝐹𝐵)))
4847, 22eqeltrd 2698 . . . . . 6 (𝜑 → sup(ran (𝑥 ∈ (𝒫 𝐵 ∩ Fin) ↦ Σ𝑦𝑥 ((𝐹𝐵)‘𝑦)), ℝ*, < ) ∈ ℝ)
49 supxrre3 39005 . . . . . . 7 ((ran (𝑥 ∈ (𝒫 𝐵 ∩ Fin) ↦ Σ𝑦𝑥 ((𝐹𝐵)‘𝑦)) ⊆ ℝ ∧ ran (𝑥 ∈ (𝒫 𝐵 ∩ Fin) ↦ Σ𝑦𝑥 ((𝐹𝐵)‘𝑦)) ≠ ∅) → (sup(ran (𝑥 ∈ (𝒫 𝐵 ∩ Fin) ↦ Σ𝑦𝑥 ((𝐹𝐵)‘𝑦)), ℝ*, < ) ∈ ℝ ↔ ∃𝑤 ∈ ℝ ∀𝑡 ∈ ran (𝑥 ∈ (𝒫 𝐵 ∩ Fin) ↦ Σ𝑦𝑥 ((𝐹𝐵)‘𝑦))𝑡𝑤))
5043, 45, 49syl2anc 692 . . . . . 6 (𝜑 → (sup(ran (𝑥 ∈ (𝒫 𝐵 ∩ Fin) ↦ Σ𝑦𝑥 ((𝐹𝐵)‘𝑦)), ℝ*, < ) ∈ ℝ ↔ ∃𝑤 ∈ ℝ ∀𝑡 ∈ ran (𝑥 ∈ (𝒫 𝐵 ∩ Fin) ↦ Σ𝑦𝑥 ((𝐹𝐵)‘𝑦))𝑡𝑤))
5148, 50mpbid 222 . . . . 5 (𝜑 → ∃𝑤 ∈ ℝ ∀𝑡 ∈ ran (𝑥 ∈ (𝒫 𝐵 ∩ Fin) ↦ Σ𝑦𝑥 ((𝐹𝐵)‘𝑦))𝑡𝑤)
52 eqid 2621 . . . . 5 {𝑧 ∣ ∃𝑣 ∈ ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑦𝑥 ((𝐹𝐴)‘𝑦))∃𝑢 ∈ ran (𝑥 ∈ (𝒫 𝐵 ∩ Fin) ↦ Σ𝑦𝑥 ((𝐹𝐵)‘𝑦))𝑧 = (𝑣 + 𝑢)} = {𝑧 ∣ ∃𝑣 ∈ ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑦𝑥 ((𝐹𝐴)‘𝑦))∃𝑢 ∈ ran (𝑥 ∈ (𝒫 𝐵 ∩ Fin) ↦ Σ𝑦𝑥 ((𝐹𝐵)‘𝑦))𝑧 = (𝑣 + 𝑢)}
5331, 33, 39, 43, 45, 51, 52supadd 10935 . . . 4 (𝜑 → (sup(ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑦𝑥 ((𝐹𝐴)‘𝑦)), ℝ, < ) + sup(ran (𝑥 ∈ (𝒫 𝐵 ∩ Fin) ↦ Σ𝑦𝑥 ((𝐹𝐵)‘𝑦)), ℝ, < )) = sup({𝑧 ∣ ∃𝑣 ∈ ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑦𝑥 ((𝐹𝐴)‘𝑦))∃𝑢 ∈ ran (𝑥 ∈ (𝒫 𝐵 ∩ Fin) ↦ Σ𝑦𝑥 ((𝐹𝐵)‘𝑦))𝑧 = (𝑣 + 𝑢)}, ℝ, < ))
54 simpl 473 . . . . . . . . . 10 ((𝜑𝑟 ∈ {𝑧 ∣ ∃𝑣 ∈ ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑦𝑥 ((𝐹𝐴)‘𝑦))∃𝑢 ∈ ran (𝑥 ∈ (𝒫 𝐵 ∩ Fin) ↦ Σ𝑦𝑥 ((𝐹𝐵)‘𝑦))𝑧 = (𝑣 + 𝑢)}) → 𝜑)
55 vex 3189 . . . . . . . . . . . . 13 𝑟 ∈ V
56 eqeq1 2625 . . . . . . . . . . . . . . 15 (𝑧 = 𝑟 → (𝑧 = (𝑣 + 𝑢) ↔ 𝑟 = (𝑣 + 𝑢)))
5756rexbidv 3045 . . . . . . . . . . . . . 14 (𝑧 = 𝑟 → (∃𝑢 ∈ ran (𝑥 ∈ (𝒫 𝐵 ∩ Fin) ↦ Σ𝑦𝑥 ((𝐹𝐵)‘𝑦))𝑧 = (𝑣 + 𝑢) ↔ ∃𝑢 ∈ ran (𝑥 ∈ (𝒫 𝐵 ∩ Fin) ↦ Σ𝑦𝑥 ((𝐹𝐵)‘𝑦))𝑟 = (𝑣 + 𝑢)))
5857rexbidv 3045 . . . . . . . . . . . . 13 (𝑧 = 𝑟 → (∃𝑣 ∈ ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑦𝑥 ((𝐹𝐴)‘𝑦))∃𝑢 ∈ ran (𝑥 ∈ (𝒫 𝐵 ∩ Fin) ↦ Σ𝑦𝑥 ((𝐹𝐵)‘𝑦))𝑧 = (𝑣 + 𝑢) ↔ ∃𝑣 ∈ ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑦𝑥 ((𝐹𝐴)‘𝑦))∃𝑢 ∈ ran (𝑥 ∈ (𝒫 𝐵 ∩ Fin) ↦ Σ𝑦𝑥 ((𝐹𝐵)‘𝑦))𝑟 = (𝑣 + 𝑢)))
5955, 58elab 3333 . . . . . . . . . . . 12 (𝑟 ∈ {𝑧 ∣ ∃𝑣 ∈ ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑦𝑥 ((𝐹𝐴)‘𝑦))∃𝑢 ∈ ran (𝑥 ∈ (𝒫 𝐵 ∩ Fin) ↦ Σ𝑦𝑥 ((𝐹𝐵)‘𝑦))𝑧 = (𝑣 + 𝑢)} ↔ ∃𝑣 ∈ ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑦𝑥 ((𝐹𝐴)‘𝑦))∃𝑢 ∈ ran (𝑥 ∈ (𝒫 𝐵 ∩ Fin) ↦ Σ𝑦𝑥 ((𝐹𝐵)‘𝑦))𝑟 = (𝑣 + 𝑢))
6059biimpi 206 . . . . . . . . . . 11 (𝑟 ∈ {𝑧 ∣ ∃𝑣 ∈ ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑦𝑥 ((𝐹𝐴)‘𝑦))∃𝑢 ∈ ran (𝑥 ∈ (𝒫 𝐵 ∩ Fin) ↦ Σ𝑦𝑥 ((𝐹𝐵)‘𝑦))𝑧 = (𝑣 + 𝑢)} → ∃𝑣 ∈ ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑦𝑥 ((𝐹𝐴)‘𝑦))∃𝑢 ∈ ran (𝑥 ∈ (𝒫 𝐵 ∩ Fin) ↦ Σ𝑦𝑥 ((𝐹𝐵)‘𝑦))𝑟 = (𝑣 + 𝑢))
6160adantl 482 . . . . . . . . . 10 ((𝜑𝑟 ∈ {𝑧 ∣ ∃𝑣 ∈ ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑦𝑥 ((𝐹𝐴)‘𝑦))∃𝑢 ∈ ran (𝑥 ∈ (𝒫 𝐵 ∩ Fin) ↦ Σ𝑦𝑥 ((𝐹𝐵)‘𝑦))𝑧 = (𝑣 + 𝑢)}) → ∃𝑣 ∈ ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑦𝑥 ((𝐹𝐴)‘𝑦))∃𝑢 ∈ ran (𝑥 ∈ (𝒫 𝐵 ∩ Fin) ↦ Σ𝑦𝑥 ((𝐹𝐵)‘𝑦))𝑟 = (𝑣 + 𝑢))
62 simpl 473 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑣 ∈ ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑦𝑥 ((𝐹𝐴)‘𝑦)) ∧ 𝑢 ∈ ran (𝑥 ∈ (𝒫 𝐵 ∩ Fin) ↦ Σ𝑦𝑥 ((𝐹𝐵)‘𝑦)))) → 𝜑)
63 vex 3189 . . . . . . . . . . . . . . . . . . . 20 𝑣 ∈ V
64 sumeq1 14353 . . . . . . . . . . . . . . . . . . . . . 22 (𝑥 = 𝑎 → Σ𝑦𝑥 ((𝐹𝐴)‘𝑦) = Σ𝑦𝑎 ((𝐹𝐴)‘𝑦))
6564cbvmptv 4710 . . . . . . . . . . . . . . . . . . . . 21 (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑦𝑥 ((𝐹𝐴)‘𝑦)) = (𝑎 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑦𝑎 ((𝐹𝐴)‘𝑦))
6665elrnmpt 5332 . . . . . . . . . . . . . . . . . . . 20 (𝑣 ∈ V → (𝑣 ∈ ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑦𝑥 ((𝐹𝐴)‘𝑦)) ↔ ∃𝑎 ∈ (𝒫 𝐴 ∩ Fin)𝑣 = Σ𝑦𝑎 ((𝐹𝐴)‘𝑦)))
6763, 66ax-mp 5 . . . . . . . . . . . . . . . . . . 19 (𝑣 ∈ ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑦𝑥 ((𝐹𝐴)‘𝑦)) ↔ ∃𝑎 ∈ (𝒫 𝐴 ∩ Fin)𝑣 = Σ𝑦𝑎 ((𝐹𝐴)‘𝑦))
6867biimpi 206 . . . . . . . . . . . . . . . . . 18 (𝑣 ∈ ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑦𝑥 ((𝐹𝐴)‘𝑦)) → ∃𝑎 ∈ (𝒫 𝐴 ∩ Fin)𝑣 = Σ𝑦𝑎 ((𝐹𝐴)‘𝑦))
6968adantr 481 . . . . . . . . . . . . . . . . 17 ((𝑣 ∈ ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑦𝑥 ((𝐹𝐴)‘𝑦)) ∧ 𝑢 ∈ ran (𝑥 ∈ (𝒫 𝐵 ∩ Fin) ↦ Σ𝑦𝑥 ((𝐹𝐵)‘𝑦))) → ∃𝑎 ∈ (𝒫 𝐴 ∩ Fin)𝑣 = Σ𝑦𝑎 ((𝐹𝐴)‘𝑦))
70 vex 3189 . . . . . . . . . . . . . . . . . . . 20 𝑢 ∈ V
71 sumeq1 14353 . . . . . . . . . . . . . . . . . . . . . 22 (𝑥 = 𝑏 → Σ𝑦𝑥 ((𝐹𝐵)‘𝑦) = Σ𝑦𝑏 ((𝐹𝐵)‘𝑦))
7271cbvmptv 4710 . . . . . . . . . . . . . . . . . . . . 21 (𝑥 ∈ (𝒫 𝐵 ∩ Fin) ↦ Σ𝑦𝑥 ((𝐹𝐵)‘𝑦)) = (𝑏 ∈ (𝒫 𝐵 ∩ Fin) ↦ Σ𝑦𝑏 ((𝐹𝐵)‘𝑦))
7372elrnmpt 5332 . . . . . . . . . . . . . . . . . . . 20 (𝑢 ∈ V → (𝑢 ∈ ran (𝑥 ∈ (𝒫 𝐵 ∩ Fin) ↦ Σ𝑦𝑥 ((𝐹𝐵)‘𝑦)) ↔ ∃𝑏 ∈ (𝒫 𝐵 ∩ Fin)𝑢 = Σ𝑦𝑏 ((𝐹𝐵)‘𝑦)))
7470, 73ax-mp 5 . . . . . . . . . . . . . . . . . . 19 (𝑢 ∈ ran (𝑥 ∈ (𝒫 𝐵 ∩ Fin) ↦ Σ𝑦𝑥 ((𝐹𝐵)‘𝑦)) ↔ ∃𝑏 ∈ (𝒫 𝐵 ∩ Fin)𝑢 = Σ𝑦𝑏 ((𝐹𝐵)‘𝑦))
7574biimpi 206 . . . . . . . . . . . . . . . . . 18 (𝑢 ∈ ran (𝑥 ∈ (𝒫 𝐵 ∩ Fin) ↦ Σ𝑦𝑥 ((𝐹𝐵)‘𝑦)) → ∃𝑏 ∈ (𝒫 𝐵 ∩ Fin)𝑢 = Σ𝑦𝑏 ((𝐹𝐵)‘𝑦))
7675adantl 482 . . . . . . . . . . . . . . . . 17 ((𝑣 ∈ ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑦𝑥 ((𝐹𝐴)‘𝑦)) ∧ 𝑢 ∈ ran (𝑥 ∈ (𝒫 𝐵 ∩ Fin) ↦ Σ𝑦𝑥 ((𝐹𝐵)‘𝑦))) → ∃𝑏 ∈ (𝒫 𝐵 ∩ Fin)𝑢 = Σ𝑦𝑏 ((𝐹𝐵)‘𝑦))
7769, 76jca 554 . . . . . . . . . . . . . . . 16 ((𝑣 ∈ ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑦𝑥 ((𝐹𝐴)‘𝑦)) ∧ 𝑢 ∈ ran (𝑥 ∈ (𝒫 𝐵 ∩ Fin) ↦ Σ𝑦𝑥 ((𝐹𝐵)‘𝑦))) → (∃𝑎 ∈ (𝒫 𝐴 ∩ Fin)𝑣 = Σ𝑦𝑎 ((𝐹𝐴)‘𝑦) ∧ ∃𝑏 ∈ (𝒫 𝐵 ∩ Fin)𝑢 = Σ𝑦𝑏 ((𝐹𝐵)‘𝑦)))
78 reeanv 3097 . . . . . . . . . . . . . . . 16 (∃𝑎 ∈ (𝒫 𝐴 ∩ Fin)∃𝑏 ∈ (𝒫 𝐵 ∩ Fin)(𝑣 = Σ𝑦𝑎 ((𝐹𝐴)‘𝑦) ∧ 𝑢 = Σ𝑦𝑏 ((𝐹𝐵)‘𝑦)) ↔ (∃𝑎 ∈ (𝒫 𝐴 ∩ Fin)𝑣 = Σ𝑦𝑎 ((𝐹𝐴)‘𝑦) ∧ ∃𝑏 ∈ (𝒫 𝐵 ∩ Fin)𝑢 = Σ𝑦𝑏 ((𝐹𝐵)‘𝑦)))
7977, 78sylibr 224 . . . . . . . . . . . . . . 15 ((𝑣 ∈ ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑦𝑥 ((𝐹𝐴)‘𝑦)) ∧ 𝑢 ∈ ran (𝑥 ∈ (𝒫 𝐵 ∩ Fin) ↦ Σ𝑦𝑥 ((𝐹𝐵)‘𝑦))) → ∃𝑎 ∈ (𝒫 𝐴 ∩ Fin)∃𝑏 ∈ (𝒫 𝐵 ∩ Fin)(𝑣 = Σ𝑦𝑎 ((𝐹𝐴)‘𝑦) ∧ 𝑢 = Σ𝑦𝑏 ((𝐹𝐵)‘𝑦)))
8079adantl 482 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑣 ∈ ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑦𝑥 ((𝐹𝐴)‘𝑦)) ∧ 𝑢 ∈ ran (𝑥 ∈ (𝒫 𝐵 ∩ Fin) ↦ Σ𝑦𝑥 ((𝐹𝐵)‘𝑦)))) → ∃𝑎 ∈ (𝒫 𝐴 ∩ Fin)∃𝑏 ∈ (𝒫 𝐵 ∩ Fin)(𝑣 = Σ𝑦𝑎 ((𝐹𝐴)‘𝑦) ∧ 𝑢 = Σ𝑦𝑏 ((𝐹𝐵)‘𝑦)))
81 eqid 2621 . . . . . . . . . . . . . . . . . . . 20 (𝑥 ∈ (𝒫 𝑈 ∩ Fin) ↦ Σ𝑦𝑥 (𝐹𝑦)) = (𝑥 ∈ (𝒫 𝑈 ∩ Fin) ↦ Σ𝑦𝑥 (𝐹𝑦))
82 elinel1 3777 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝑎 ∈ (𝒫 𝐴 ∩ Fin) → 𝑎 ∈ 𝒫 𝐴)
83 elpwi 4140 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝑎 ∈ 𝒫 𝐴𝑎𝐴)
84 id 22 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (𝑎𝐴𝑎𝐴)
8584, 6syl6ss 3595 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝑎𝐴𝑎𝑈)
8683, 85syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝑎 ∈ 𝒫 𝐴𝑎𝑈)
8782, 86syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑎 ∈ (𝒫 𝐴 ∩ Fin) → 𝑎𝑈)
8887adantr 481 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝑎 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑏 ∈ (𝒫 𝐵 ∩ Fin)) → 𝑎𝑈)
89 elinel1 3777 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝑏 ∈ (𝒫 𝐵 ∩ Fin) → 𝑏 ∈ 𝒫 𝐵)
90 elpwi 4140 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝑏 ∈ 𝒫 𝐵𝑏𝐵)
91 id 22 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (𝑏𝐵𝑏𝐵)
9291, 19syl6ss 3595 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝑏𝐵𝑏𝑈)
9390, 92syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝑏 ∈ 𝒫 𝐵𝑏𝑈)
9489, 93syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑏 ∈ (𝒫 𝐵 ∩ Fin) → 𝑏𝑈)
9594adantl 482 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝑎 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑏 ∈ (𝒫 𝐵 ∩ Fin)) → 𝑏𝑈)
9688, 95unssd 3767 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑎 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑏 ∈ (𝒫 𝐵 ∩ Fin)) → (𝑎𝑏) ⊆ 𝑈)
97 vex 3189 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 𝑎 ∈ V
98 vex 3189 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 𝑏 ∈ V
9997, 98unex 6909 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑎𝑏) ∈ V
10099elpw 4136 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑎𝑏) ∈ 𝒫 𝑈 ↔ (𝑎𝑏) ⊆ 𝑈)
10196, 100sylibr 224 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑎 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑏 ∈ (𝒫 𝐵 ∩ Fin)) → (𝑎𝑏) ∈ 𝒫 𝑈)
102 elinel2 3778 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑎 ∈ (𝒫 𝐴 ∩ Fin) → 𝑎 ∈ Fin)
103102adantr 481 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑎 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑏 ∈ (𝒫 𝐵 ∩ Fin)) → 𝑎 ∈ Fin)
104 elinel2 3778 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑏 ∈ (𝒫 𝐵 ∩ Fin) → 𝑏 ∈ Fin)
105104adantl 482 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑎 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑏 ∈ (𝒫 𝐵 ∩ Fin)) → 𝑏 ∈ Fin)
106 unfi 8171 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑎 ∈ Fin ∧ 𝑏 ∈ Fin) → (𝑎𝑏) ∈ Fin)
107103, 105, 106syl2anc 692 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑎 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑏 ∈ (𝒫 𝐵 ∩ Fin)) → (𝑎𝑏) ∈ Fin)
108101, 107elind 3776 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑎 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑏 ∈ (𝒫 𝐵 ∩ Fin)) → (𝑎𝑏) ∈ (𝒫 𝑈 ∩ Fin))
109108adantl 482 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑 ∧ (𝑎 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑏 ∈ (𝒫 𝐵 ∩ Fin))) → (𝑎𝑏) ∈ (𝒫 𝑈 ∩ Fin))
110109ad2antrr 761 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑 ∧ (𝑎 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑏 ∈ (𝒫 𝐵 ∩ Fin))) ∧ (𝑣 = Σ𝑦𝑎 ((𝐹𝐴)‘𝑦) ∧ 𝑢 = Σ𝑦𝑏 ((𝐹𝐵)‘𝑦))) ∧ 𝑟 = (𝑣 + 𝑢)) → (𝑎𝑏) ∈ (𝒫 𝑈 ∩ Fin))
111 simpl 473 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝑣 = Σ𝑦𝑎 ((𝐹𝐴)‘𝑦) ∧ 𝑢 = Σ𝑦𝑏 ((𝐹𝐵)‘𝑦)) → 𝑣 = Σ𝑦𝑎 ((𝐹𝐴)‘𝑦))
112 simpr 477 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝑣 = Σ𝑦𝑎 ((𝐹𝐴)‘𝑦) ∧ 𝑢 = Σ𝑦𝑏 ((𝐹𝐵)‘𝑦)) → 𝑢 = Σ𝑦𝑏 ((𝐹𝐵)‘𝑦))
113111, 112oveq12d 6622 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑣 = Σ𝑦𝑎 ((𝐹𝐴)‘𝑦) ∧ 𝑢 = Σ𝑦𝑏 ((𝐹𝐵)‘𝑦)) → (𝑣 + 𝑢) = (Σ𝑦𝑎 ((𝐹𝐴)‘𝑦) + Σ𝑦𝑏 ((𝐹𝐵)‘𝑦)))
114113adantl 482 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝑎 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑏 ∈ (𝒫 𝐵 ∩ Fin)) ∧ (𝑣 = Σ𝑦𝑎 ((𝐹𝐴)‘𝑦) ∧ 𝑢 = Σ𝑦𝑏 ((𝐹𝐵)‘𝑦))) → (𝑣 + 𝑢) = (Σ𝑦𝑎 ((𝐹𝐴)‘𝑦) + Σ𝑦𝑏 ((𝐹𝐵)‘𝑦)))
11582, 83syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (𝑎 ∈ (𝒫 𝐴 ∩ Fin) → 𝑎𝐴)
116115sselda 3583 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((𝑎 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑦𝑎) → 𝑦𝐴)
117 fvres 6164 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝑦𝐴 → ((𝐹𝐴)‘𝑦) = (𝐹𝑦))
118116, 117syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝑎 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑦𝑎) → ((𝐹𝐴)‘𝑦) = (𝐹𝑦))
119118sumeq2dv 14367 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑎 ∈ (𝒫 𝐴 ∩ Fin) → Σ𝑦𝑎 ((𝐹𝐴)‘𝑦) = Σ𝑦𝑎 (𝐹𝑦))
120119adantr 481 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝑎 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑏 ∈ (𝒫 𝐵 ∩ Fin)) → Σ𝑦𝑎 ((𝐹𝐴)‘𝑦) = Σ𝑦𝑎 (𝐹𝑦))
12189, 90syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (𝑏 ∈ (𝒫 𝐵 ∩ Fin) → 𝑏𝐵)
122121sselda 3583 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((𝑏 ∈ (𝒫 𝐵 ∩ Fin) ∧ 𝑦𝑏) → 𝑦𝐵)
123 fvres 6164 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝑦𝐵 → ((𝐹𝐵)‘𝑦) = (𝐹𝑦))
124122, 123syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝑏 ∈ (𝒫 𝐵 ∩ Fin) ∧ 𝑦𝑏) → ((𝐹𝐵)‘𝑦) = (𝐹𝑦))
125124sumeq2dv 14367 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑏 ∈ (𝒫 𝐵 ∩ Fin) → Σ𝑦𝑏 ((𝐹𝐵)‘𝑦) = Σ𝑦𝑏 (𝐹𝑦))
126125adantl 482 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝑎 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑏 ∈ (𝒫 𝐵 ∩ Fin)) → Σ𝑦𝑏 ((𝐹𝐵)‘𝑦) = Σ𝑦𝑏 (𝐹𝑦))
127120, 126oveq12d 6622 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑎 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑏 ∈ (𝒫 𝐵 ∩ Fin)) → (Σ𝑦𝑎 ((𝐹𝐴)‘𝑦) + Σ𝑦𝑏 ((𝐹𝐵)‘𝑦)) = (Σ𝑦𝑎 (𝐹𝑦) + Σ𝑦𝑏 (𝐹𝑦)))
128127adantr 481 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝑎 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑏 ∈ (𝒫 𝐵 ∩ Fin)) ∧ (𝑣 = Σ𝑦𝑎 ((𝐹𝐴)‘𝑦) ∧ 𝑢 = Σ𝑦𝑏 ((𝐹𝐵)‘𝑦))) → (Σ𝑦𝑎 ((𝐹𝐴)‘𝑦) + Σ𝑦𝑏 ((𝐹𝐵)‘𝑦)) = (Σ𝑦𝑎 (𝐹𝑦) + Σ𝑦𝑏 (𝐹𝑦)))
129114, 128eqtrd 2655 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝑎 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑏 ∈ (𝒫 𝐵 ∩ Fin)) ∧ (𝑣 = Σ𝑦𝑎 ((𝐹𝐴)‘𝑦) ∧ 𝑢 = Σ𝑦𝑏 ((𝐹𝐵)‘𝑦))) → (𝑣 + 𝑢) = (Σ𝑦𝑎 (𝐹𝑦) + Σ𝑦𝑏 (𝐹𝑦)))
130129ad4ant23 1294 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝜑 ∧ (𝑎 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑏 ∈ (𝒫 𝐵 ∩ Fin))) ∧ (𝑣 = Σ𝑦𝑎 ((𝐹𝐴)‘𝑦) ∧ 𝑢 = Σ𝑦𝑏 ((𝐹𝐵)‘𝑦))) ∧ 𝑟 = (𝑣 + 𝑢)) → (𝑣 + 𝑢) = (Σ𝑦𝑎 (𝐹𝑦) + Σ𝑦𝑏 (𝐹𝑦)))
131 simpr 477 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝜑 ∧ (𝑎 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑏 ∈ (𝒫 𝐵 ∩ Fin))) ∧ (𝑣 = Σ𝑦𝑎 ((𝐹𝐴)‘𝑦) ∧ 𝑢 = Σ𝑦𝑏 ((𝐹𝐵)‘𝑦))) ∧ 𝑟 = (𝑣 + 𝑢)) → 𝑟 = (𝑣 + 𝑢))
132 sge0resplit.in0 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝜑 → (𝐴𝐵) = ∅)
133132adantr 481 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝜑 ∧ (𝑎 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑏 ∈ (𝒫 𝐵 ∩ Fin))) → (𝐴𝐵) = ∅)
134115ad2antrl 763 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝜑 ∧ (𝑎 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑏 ∈ (𝒫 𝐵 ∩ Fin))) → 𝑎𝐴)
135121adantl 482 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝑎 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑏 ∈ (𝒫 𝐵 ∩ Fin)) → 𝑏𝐵)
136135adantl 482 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝜑 ∧ (𝑎 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑏 ∈ (𝒫 𝐵 ∩ Fin))) → 𝑏𝐵)
137 ssin0 38708 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝐴𝐵) = ∅ ∧ 𝑎𝐴𝑏𝐵) → (𝑎𝑏) = ∅)
138133, 134, 136, 137syl3anc 1323 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝜑 ∧ (𝑎 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑏 ∈ (𝒫 𝐵 ∩ Fin))) → (𝑎𝑏) = ∅)
139 eqidd 2622 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝜑 ∧ (𝑎 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑏 ∈ (𝒫 𝐵 ∩ Fin))) → (𝑎𝑏) = (𝑎𝑏))
140107adantl 482 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝜑 ∧ (𝑎 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑏 ∈ (𝒫 𝐵 ∩ Fin))) → (𝑎𝑏) ∈ Fin)
141 rge0ssre 12222 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (0[,)+∞) ⊆ ℝ
142 ax-resscn 9937 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ℝ ⊆ ℂ
143141, 142sstri 3592 . . . . . . . . . . . . . . . . . . . . . . . . 25 (0[,)+∞) ⊆ ℂ
1442, 27fge0iccico 39894 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝜑𝐹:𝑈⟶(0[,)+∞))
145144ad2antrr 761 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝜑 ∧ (𝑎 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑏 ∈ (𝒫 𝐵 ∩ Fin))) ∧ 𝑦 ∈ (𝑎𝑏)) → 𝐹:𝑈⟶(0[,)+∞))
14696sselda 3583 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((𝑎 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑏 ∈ (𝒫 𝐵 ∩ Fin)) ∧ 𝑦 ∈ (𝑎𝑏)) → 𝑦𝑈)
147146adantll 749 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝜑 ∧ (𝑎 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑏 ∈ (𝒫 𝐵 ∩ Fin))) ∧ 𝑦 ∈ (𝑎𝑏)) → 𝑦𝑈)
148145, 147ffvelrnd 6316 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝜑 ∧ (𝑎 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑏 ∈ (𝒫 𝐵 ∩ Fin))) ∧ 𝑦 ∈ (𝑎𝑏)) → (𝐹𝑦) ∈ (0[,)+∞))
149143, 148sseldi 3581 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝜑 ∧ (𝑎 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑏 ∈ (𝒫 𝐵 ∩ Fin))) ∧ 𝑦 ∈ (𝑎𝑏)) → (𝐹𝑦) ∈ ℂ)
150138, 139, 140, 149fsumsplit 14404 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑 ∧ (𝑎 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑏 ∈ (𝒫 𝐵 ∩ Fin))) → Σ𝑦 ∈ (𝑎𝑏)(𝐹𝑦) = (Σ𝑦𝑎 (𝐹𝑦) + Σ𝑦𝑏 (𝐹𝑦)))
151150ad2antrr 761 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝜑 ∧ (𝑎 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑏 ∈ (𝒫 𝐵 ∩ Fin))) ∧ (𝑣 = Σ𝑦𝑎 ((𝐹𝐴)‘𝑦) ∧ 𝑢 = Σ𝑦𝑏 ((𝐹𝐵)‘𝑦))) ∧ 𝑟 = (𝑣 + 𝑢)) → Σ𝑦 ∈ (𝑎𝑏)(𝐹𝑦) = (Σ𝑦𝑎 (𝐹𝑦) + Σ𝑦𝑏 (𝐹𝑦)))
152130, 131, 1513eqtr4d 2665 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑 ∧ (𝑎 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑏 ∈ (𝒫 𝐵 ∩ Fin))) ∧ (𝑣 = Σ𝑦𝑎 ((𝐹𝐴)‘𝑦) ∧ 𝑢 = Σ𝑦𝑏 ((𝐹𝐵)‘𝑦))) ∧ 𝑟 = (𝑣 + 𝑢)) → 𝑟 = Σ𝑦 ∈ (𝑎𝑏)(𝐹𝑦))
153 sumeq1 14353 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑥 = (𝑎𝑏) → Σ𝑦𝑥 (𝐹𝑦) = Σ𝑦 ∈ (𝑎𝑏)(𝐹𝑦))
154153eqeq2d 2631 . . . . . . . . . . . . . . . . . . . . . 22 (𝑥 = (𝑎𝑏) → (𝑟 = Σ𝑦𝑥 (𝐹𝑦) ↔ 𝑟 = Σ𝑦 ∈ (𝑎𝑏)(𝐹𝑦)))
155154rspcev 3295 . . . . . . . . . . . . . . . . . . . . 21 (((𝑎𝑏) ∈ (𝒫 𝑈 ∩ Fin) ∧ 𝑟 = Σ𝑦 ∈ (𝑎𝑏)(𝐹𝑦)) → ∃𝑥 ∈ (𝒫 𝑈 ∩ Fin)𝑟 = Σ𝑦𝑥 (𝐹𝑦))
156110, 152, 155syl2anc 692 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑 ∧ (𝑎 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑏 ∈ (𝒫 𝐵 ∩ Fin))) ∧ (𝑣 = Σ𝑦𝑎 ((𝐹𝐴)‘𝑦) ∧ 𝑢 = Σ𝑦𝑏 ((𝐹𝐵)‘𝑦))) ∧ 𝑟 = (𝑣 + 𝑢)) → ∃𝑥 ∈ (𝒫 𝑈 ∩ Fin)𝑟 = Σ𝑦𝑥 (𝐹𝑦))
15755a1i 11 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑 ∧ (𝑎 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑏 ∈ (𝒫 𝐵 ∩ Fin))) ∧ (𝑣 = Σ𝑦𝑎 ((𝐹𝐴)‘𝑦) ∧ 𝑢 = Σ𝑦𝑏 ((𝐹𝐵)‘𝑦))) ∧ 𝑟 = (𝑣 + 𝑢)) → 𝑟 ∈ V)
15881, 156, 157elrnmptd 38840 . . . . . . . . . . . . . . . . . . 19 ((((𝜑 ∧ (𝑎 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑏 ∈ (𝒫 𝐵 ∩ Fin))) ∧ (𝑣 = Σ𝑦𝑎 ((𝐹𝐴)‘𝑦) ∧ 𝑢 = Σ𝑦𝑏 ((𝐹𝐵)‘𝑦))) ∧ 𝑟 = (𝑣 + 𝑢)) → 𝑟 ∈ ran (𝑥 ∈ (𝒫 𝑈 ∩ Fin) ↦ Σ𝑦𝑥 (𝐹𝑦)))
159158ex 450 . . . . . . . . . . . . . . . . . 18 (((𝜑 ∧ (𝑎 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑏 ∈ (𝒫 𝐵 ∩ Fin))) ∧ (𝑣 = Σ𝑦𝑎 ((𝐹𝐴)‘𝑦) ∧ 𝑢 = Σ𝑦𝑏 ((𝐹𝐵)‘𝑦))) → (𝑟 = (𝑣 + 𝑢) → 𝑟 ∈ ran (𝑥 ∈ (𝒫 𝑈 ∩ Fin) ↦ Σ𝑦𝑥 (𝐹𝑦))))
160159ex 450 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ (𝑎 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑏 ∈ (𝒫 𝐵 ∩ Fin))) → ((𝑣 = Σ𝑦𝑎 ((𝐹𝐴)‘𝑦) ∧ 𝑢 = Σ𝑦𝑏 ((𝐹𝐵)‘𝑦)) → (𝑟 = (𝑣 + 𝑢) → 𝑟 ∈ ran (𝑥 ∈ (𝒫 𝑈 ∩ Fin) ↦ Σ𝑦𝑥 (𝐹𝑦)))))
161160ex 450 . . . . . . . . . . . . . . . 16 (𝜑 → ((𝑎 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑏 ∈ (𝒫 𝐵 ∩ Fin)) → ((𝑣 = Σ𝑦𝑎 ((𝐹𝐴)‘𝑦) ∧ 𝑢 = Σ𝑦𝑏 ((𝐹𝐵)‘𝑦)) → (𝑟 = (𝑣 + 𝑢) → 𝑟 ∈ ran (𝑥 ∈ (𝒫 𝑈 ∩ Fin) ↦ Σ𝑦𝑥 (𝐹𝑦))))))
162161rexlimdvv 3030 . . . . . . . . . . . . . . 15 (𝜑 → (∃𝑎 ∈ (𝒫 𝐴 ∩ Fin)∃𝑏 ∈ (𝒫 𝐵 ∩ Fin)(𝑣 = Σ𝑦𝑎 ((𝐹𝐴)‘𝑦) ∧ 𝑢 = Σ𝑦𝑏 ((𝐹𝐵)‘𝑦)) → (𝑟 = (𝑣 + 𝑢) → 𝑟 ∈ ran (𝑥 ∈ (𝒫 𝑈 ∩ Fin) ↦ Σ𝑦𝑥 (𝐹𝑦)))))
163162imp 445 . . . . . . . . . . . . . 14 ((𝜑 ∧ ∃𝑎 ∈ (𝒫 𝐴 ∩ Fin)∃𝑏 ∈ (𝒫 𝐵 ∩ Fin)(𝑣 = Σ𝑦𝑎 ((𝐹𝐴)‘𝑦) ∧ 𝑢 = Σ𝑦𝑏 ((𝐹𝐵)‘𝑦))) → (𝑟 = (𝑣 + 𝑢) → 𝑟 ∈ ran (𝑥 ∈ (𝒫 𝑈 ∩ Fin) ↦ Σ𝑦𝑥 (𝐹𝑦))))
16462, 80, 163syl2anc 692 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑣 ∈ ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑦𝑥 ((𝐹𝐴)‘𝑦)) ∧ 𝑢 ∈ ran (𝑥 ∈ (𝒫 𝐵 ∩ Fin) ↦ Σ𝑦𝑥 ((𝐹𝐵)‘𝑦)))) → (𝑟 = (𝑣 + 𝑢) → 𝑟 ∈ ran (𝑥 ∈ (𝒫 𝑈 ∩ Fin) ↦ Σ𝑦𝑥 (𝐹𝑦))))
165164ex 450 . . . . . . . . . . . 12 (𝜑 → ((𝑣 ∈ ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑦𝑥 ((𝐹𝐴)‘𝑦)) ∧ 𝑢 ∈ ran (𝑥 ∈ (𝒫 𝐵 ∩ Fin) ↦ Σ𝑦𝑥 ((𝐹𝐵)‘𝑦))) → (𝑟 = (𝑣 + 𝑢) → 𝑟 ∈ ran (𝑥 ∈ (𝒫 𝑈 ∩ Fin) ↦ Σ𝑦𝑥 (𝐹𝑦)))))
166165rexlimdvv 3030 . . . . . . . . . . 11 (𝜑 → (∃𝑣 ∈ ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑦𝑥 ((𝐹𝐴)‘𝑦))∃𝑢 ∈ ran (𝑥 ∈ (𝒫 𝐵 ∩ Fin) ↦ Σ𝑦𝑥 ((𝐹𝐵)‘𝑦))𝑟 = (𝑣 + 𝑢) → 𝑟 ∈ ran (𝑥 ∈ (𝒫 𝑈 ∩ Fin) ↦ Σ𝑦𝑥 (𝐹𝑦))))
167166imp 445 . . . . . . . . . 10 ((𝜑 ∧ ∃𝑣 ∈ ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑦𝑥 ((𝐹𝐴)‘𝑦))∃𝑢 ∈ ran (𝑥 ∈ (𝒫 𝐵 ∩ Fin) ↦ Σ𝑦𝑥 ((𝐹𝐵)‘𝑦))𝑟 = (𝑣 + 𝑢)) → 𝑟 ∈ ran (𝑥 ∈ (𝒫 𝑈 ∩ Fin) ↦ Σ𝑦𝑥 (𝐹𝑦)))
16854, 61, 167syl2anc 692 . . . . . . . . 9 ((𝜑𝑟 ∈ {𝑧 ∣ ∃𝑣 ∈ ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑦𝑥 ((𝐹𝐴)‘𝑦))∃𝑢 ∈ ran (𝑥 ∈ (𝒫 𝐵 ∩ Fin) ↦ Σ𝑦𝑥 ((𝐹𝐵)‘𝑦))𝑧 = (𝑣 + 𝑢)}) → 𝑟 ∈ ran (𝑥 ∈ (𝒫 𝑈 ∩ Fin) ↦ Σ𝑦𝑥 (𝐹𝑦)))
169168ex 450 . . . . . . . 8 (𝜑 → (𝑟 ∈ {𝑧 ∣ ∃𝑣 ∈ ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑦𝑥 ((𝐹𝐴)‘𝑦))∃𝑢 ∈ ran (𝑥 ∈ (𝒫 𝐵 ∩ Fin) ↦ Σ𝑦𝑥 ((𝐹𝐵)‘𝑦))𝑧 = (𝑣 + 𝑢)} → 𝑟 ∈ ran (𝑥 ∈ (𝒫 𝑈 ∩ Fin) ↦ Σ𝑦𝑥 (𝐹𝑦))))
17081elrnmpt 5332 . . . . . . . . . . . . 13 (𝑟 ∈ ran (𝑥 ∈ (𝒫 𝑈 ∩ Fin) ↦ Σ𝑦𝑥 (𝐹𝑦)) → (𝑟 ∈ ran (𝑥 ∈ (𝒫 𝑈 ∩ Fin) ↦ Σ𝑦𝑥 (𝐹𝑦)) ↔ ∃𝑥 ∈ (𝒫 𝑈 ∩ Fin)𝑟 = Σ𝑦𝑥 (𝐹𝑦)))
171170ibi 256 . . . . . . . . . . . 12 (𝑟 ∈ ran (𝑥 ∈ (𝒫 𝑈 ∩ Fin) ↦ Σ𝑦𝑥 (𝐹𝑦)) → ∃𝑥 ∈ (𝒫 𝑈 ∩ Fin)𝑟 = Σ𝑦𝑥 (𝐹𝑦))
172171adantl 482 . . . . . . . . . . 11 ((𝜑𝑟 ∈ ran (𝑥 ∈ (𝒫 𝑈 ∩ Fin) ↦ Σ𝑦𝑥 (𝐹𝑦))) → ∃𝑥 ∈ (𝒫 𝑈 ∩ Fin)𝑟 = Σ𝑦𝑥 (𝐹𝑦))
173 nfv 1840 . . . . . . . . . . . . 13 𝑥𝜑
174 nfcv 2761 . . . . . . . . . . . . . 14 𝑥𝑟
175 nfmpt1 4707 . . . . . . . . . . . . . . 15 𝑥(𝑥 ∈ (𝒫 𝑈 ∩ Fin) ↦ Σ𝑦𝑥 (𝐹𝑦))
176175nfrn 5328 . . . . . . . . . . . . . 14 𝑥ran (𝑥 ∈ (𝒫 𝑈 ∩ Fin) ↦ Σ𝑦𝑥 (𝐹𝑦))
177174, 176nfel 2773 . . . . . . . . . . . . 13 𝑥 𝑟 ∈ ran (𝑥 ∈ (𝒫 𝑈 ∩ Fin) ↦ Σ𝑦𝑥 (𝐹𝑦))
178173, 177nfan 1825 . . . . . . . . . . . 12 𝑥(𝜑𝑟 ∈ ran (𝑥 ∈ (𝒫 𝑈 ∩ Fin) ↦ Σ𝑦𝑥 (𝐹𝑦)))
179 nfmpt1 4707 . . . . . . . . . . . . . 14 𝑥(𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑦𝑥 ((𝐹𝐴)‘𝑦))
180179nfrn 5328 . . . . . . . . . . . . 13 𝑥ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑦𝑥 ((𝐹𝐴)‘𝑦))
181 nfmpt1 4707 . . . . . . . . . . . . . . 15 𝑥(𝑥 ∈ (𝒫 𝐵 ∩ Fin) ↦ Σ𝑦𝑥 ((𝐹𝐵)‘𝑦))
182181nfrn 5328 . . . . . . . . . . . . . 14 𝑥ran (𝑥 ∈ (𝒫 𝐵 ∩ Fin) ↦ Σ𝑦𝑥 ((𝐹𝐵)‘𝑦))
183 nfv 1840 . . . . . . . . . . . . . 14 𝑥 𝑟 = (𝑣 + 𝑢)
184182, 183nfrex 3001 . . . . . . . . . . . . 13 𝑥𝑢 ∈ ran (𝑥 ∈ (𝒫 𝐵 ∩ Fin) ↦ Σ𝑦𝑥 ((𝐹𝐵)‘𝑦))𝑟 = (𝑣 + 𝑢)
185180, 184nfrex 3001 . . . . . . . . . . . 12 𝑥𝑣 ∈ ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑦𝑥 ((𝐹𝐴)‘𝑦))∃𝑢 ∈ ran (𝑥 ∈ (𝒫 𝐵 ∩ Fin) ↦ Σ𝑦𝑥 ((𝐹𝐵)‘𝑦))𝑟 = (𝑣 + 𝑢)
186 inss2 3812 . . . . . . . . . . . . . . . . . . . . 21 (𝑥𝐴) ⊆ 𝐴
187186sseli 3579 . . . . . . . . . . . . . . . . . . . 20 (𝑦 ∈ (𝑥𝐴) → 𝑦𝐴)
188187adantl 482 . . . . . . . . . . . . . . . . . . 19 ((𝑥 ∈ (𝒫 𝑈 ∩ Fin) ∧ 𝑦 ∈ (𝑥𝐴)) → 𝑦𝐴)
189117eqcomd 2627 . . . . . . . . . . . . . . . . . . 19 (𝑦𝐴 → (𝐹𝑦) = ((𝐹𝐴)‘𝑦))
190188, 189syl 17 . . . . . . . . . . . . . . . . . 18 ((𝑥 ∈ (𝒫 𝑈 ∩ Fin) ∧ 𝑦 ∈ (𝑥𝐴)) → (𝐹𝑦) = ((𝐹𝐴)‘𝑦))
191190sumeq2dv 14367 . . . . . . . . . . . . . . . . 17 (𝑥 ∈ (𝒫 𝑈 ∩ Fin) → Σ𝑦 ∈ (𝑥𝐴)(𝐹𝑦) = Σ𝑦 ∈ (𝑥𝐴)((𝐹𝐴)‘𝑦))
192 sumeq1 14353 . . . . . . . . . . . . . . . . . . 19 (𝑥 = 𝑧 → Σ𝑦𝑥 ((𝐹𝐴)‘𝑦) = Σ𝑦𝑧 ((𝐹𝐴)‘𝑦))
193192cbvmptv 4710 . . . . . . . . . . . . . . . . . 18 (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑦𝑥 ((𝐹𝐴)‘𝑦)) = (𝑧 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑦𝑧 ((𝐹𝐴)‘𝑦))
194 vex 3189 . . . . . . . . . . . . . . . . . . . . . . . 24 𝑥 ∈ V
195194inex1 4759 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑥𝐴) ∈ V
196195elpw 4136 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑥𝐴) ∈ 𝒫 𝐴 ↔ (𝑥𝐴) ⊆ 𝐴)
197186, 196mpbir 221 . . . . . . . . . . . . . . . . . . . . 21 (𝑥𝐴) ∈ 𝒫 𝐴
198197a1i 11 . . . . . . . . . . . . . . . . . . . 20 (𝑥 ∈ (𝒫 𝑈 ∩ Fin) → (𝑥𝐴) ∈ 𝒫 𝐴)
199 elinel2 3778 . . . . . . . . . . . . . . . . . . . . 21 (𝑥 ∈ (𝒫 𝑈 ∩ Fin) → 𝑥 ∈ Fin)
200 inss1 3811 . . . . . . . . . . . . . . . . . . . . . 22 (𝑥𝐴) ⊆ 𝑥
201200a1i 11 . . . . . . . . . . . . . . . . . . . . 21 (𝑥 ∈ (𝒫 𝑈 ∩ Fin) → (𝑥𝐴) ⊆ 𝑥)
202 ssfi 8124 . . . . . . . . . . . . . . . . . . . . 21 ((𝑥 ∈ Fin ∧ (𝑥𝐴) ⊆ 𝑥) → (𝑥𝐴) ∈ Fin)
203199, 201, 202syl2anc 692 . . . . . . . . . . . . . . . . . . . 20 (𝑥 ∈ (𝒫 𝑈 ∩ Fin) → (𝑥𝐴) ∈ Fin)
204198, 203elind 3776 . . . . . . . . . . . . . . . . . . 19 (𝑥 ∈ (𝒫 𝑈 ∩ Fin) → (𝑥𝐴) ∈ (𝒫 𝐴 ∩ Fin))
205 eqidd 2622 . . . . . . . . . . . . . . . . . . 19 (𝑥 ∈ (𝒫 𝑈 ∩ Fin) → Σ𝑦 ∈ (𝑥𝐴)((𝐹𝐴)‘𝑦) = Σ𝑦 ∈ (𝑥𝐴)((𝐹𝐴)‘𝑦))
206 sumeq1 14353 . . . . . . . . . . . . . . . . . . . . 21 (𝑧 = (𝑥𝐴) → Σ𝑦𝑧 ((𝐹𝐴)‘𝑦) = Σ𝑦 ∈ (𝑥𝐴)((𝐹𝐴)‘𝑦))
207206eqeq2d 2631 . . . . . . . . . . . . . . . . . . . 20 (𝑧 = (𝑥𝐴) → (Σ𝑦 ∈ (𝑥𝐴)((𝐹𝐴)‘𝑦) = Σ𝑦𝑧 ((𝐹𝐴)‘𝑦) ↔ Σ𝑦 ∈ (𝑥𝐴)((𝐹𝐴)‘𝑦) = Σ𝑦 ∈ (𝑥𝐴)((𝐹𝐴)‘𝑦)))
208207rspcev 3295 . . . . . . . . . . . . . . . . . . 19 (((𝑥𝐴) ∈ (𝒫 𝐴 ∩ Fin) ∧ Σ𝑦 ∈ (𝑥𝐴)((𝐹𝐴)‘𝑦) = Σ𝑦 ∈ (𝑥𝐴)((𝐹𝐴)‘𝑦)) → ∃𝑧 ∈ (𝒫 𝐴 ∩ Fin)Σ𝑦 ∈ (𝑥𝐴)((𝐹𝐴)‘𝑦) = Σ𝑦𝑧 ((𝐹𝐴)‘𝑦))
209204, 205, 208syl2anc 692 . . . . . . . . . . . . . . . . . 18 (𝑥 ∈ (𝒫 𝑈 ∩ Fin) → ∃𝑧 ∈ (𝒫 𝐴 ∩ Fin)Σ𝑦 ∈ (𝑥𝐴)((𝐹𝐴)‘𝑦) = Σ𝑦𝑧 ((𝐹𝐴)‘𝑦))
210 sumex 14352 . . . . . . . . . . . . . . . . . . 19 Σ𝑦 ∈ (𝑥𝐴)((𝐹𝐴)‘𝑦) ∈ V
211210a1i 11 . . . . . . . . . . . . . . . . . 18 (𝑥 ∈ (𝒫 𝑈 ∩ Fin) → Σ𝑦 ∈ (𝑥𝐴)((𝐹𝐴)‘𝑦) ∈ V)
212193, 209, 211elrnmptd 38840 . . . . . . . . . . . . . . . . 17 (𝑥 ∈ (𝒫 𝑈 ∩ Fin) → Σ𝑦 ∈ (𝑥𝐴)((𝐹𝐴)‘𝑦) ∈ ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑦𝑥 ((𝐹𝐴)‘𝑦)))
213191, 212eqeltrd 2698 . . . . . . . . . . . . . . . 16 (𝑥 ∈ (𝒫 𝑈 ∩ Fin) → Σ𝑦 ∈ (𝑥𝐴)(𝐹𝑦) ∈ ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑦𝑥 ((𝐹𝐴)‘𝑦)))
2142133ad2ant2 1081 . . . . . . . . . . . . . . 15 ((𝜑𝑥 ∈ (𝒫 𝑈 ∩ Fin) ∧ 𝑟 = Σ𝑦𝑥 (𝐹𝑦)) → Σ𝑦 ∈ (𝑥𝐴)(𝐹𝑦) ∈ ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑦𝑥 ((𝐹𝐴)‘𝑦)))
215 sumeq1 14353 . . . . . . . . . . . . . . . . . 18 (𝑥 = 𝑧 → Σ𝑦𝑥 ((𝐹𝐵)‘𝑦) = Σ𝑦𝑧 ((𝐹𝐵)‘𝑦))
216215cbvmptv 4710 . . . . . . . . . . . . . . . . 17 (𝑥 ∈ (𝒫 𝐵 ∩ Fin) ↦ Σ𝑦𝑥 ((𝐹𝐵)‘𝑦)) = (𝑧 ∈ (𝒫 𝐵 ∩ Fin) ↦ Σ𝑦𝑧 ((𝐹𝐵)‘𝑦))
217 inss2 3812 . . . . . . . . . . . . . . . . . . . . 21 (𝑥𝐵) ⊆ 𝐵
218194inex1 4759 . . . . . . . . . . . . . . . . . . . . . 22 (𝑥𝐵) ∈ V
219218elpw 4136 . . . . . . . . . . . . . . . . . . . . 21 ((𝑥𝐵) ∈ 𝒫 𝐵 ↔ (𝑥𝐵) ⊆ 𝐵)
220217, 219mpbir 221 . . . . . . . . . . . . . . . . . . . 20 (𝑥𝐵) ∈ 𝒫 𝐵
221220a1i 11 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑥 ∈ (𝒫 𝑈 ∩ Fin) ∧ 𝑟 = Σ𝑦𝑥 (𝐹𝑦)) → (𝑥𝐵) ∈ 𝒫 𝐵)
222 inss1 3811 . . . . . . . . . . . . . . . . . . . . . 22 (𝑥𝐵) ⊆ 𝑥
223222a1i 11 . . . . . . . . . . . . . . . . . . . . 21 (𝑥 ∈ (𝒫 𝑈 ∩ Fin) → (𝑥𝐵) ⊆ 𝑥)
224 ssfi 8124 . . . . . . . . . . . . . . . . . . . . 21 ((𝑥 ∈ Fin ∧ (𝑥𝐵) ⊆ 𝑥) → (𝑥𝐵) ∈ Fin)
225199, 223, 224syl2anc 692 . . . . . . . . . . . . . . . . . . . 20 (𝑥 ∈ (𝒫 𝑈 ∩ Fin) → (𝑥𝐵) ∈ Fin)
2262253ad2ant2 1081 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑥 ∈ (𝒫 𝑈 ∩ Fin) ∧ 𝑟 = Σ𝑦𝑥 (𝐹𝑦)) → (𝑥𝐵) ∈ Fin)
227221, 226elind 3776 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑥 ∈ (𝒫 𝑈 ∩ Fin) ∧ 𝑟 = Σ𝑦𝑥 (𝐹𝑦)) → (𝑥𝐵) ∈ (𝒫 𝐵 ∩ Fin))
228217sseli 3579 . . . . . . . . . . . . . . . . . . . . . 22 (𝑦 ∈ (𝑥𝐵) → 𝑦𝐵)
229123eqcomd 2627 . . . . . . . . . . . . . . . . . . . . . 22 (𝑦𝐵 → (𝐹𝑦) = ((𝐹𝐵)‘𝑦))
230228, 229syl 17 . . . . . . . . . . . . . . . . . . . . 21 (𝑦 ∈ (𝑥𝐵) → (𝐹𝑦) = ((𝐹𝐵)‘𝑦))
231230sumeq2i 14363 . . . . . . . . . . . . . . . . . . . 20 Σ𝑦 ∈ (𝑥𝐵)(𝐹𝑦) = Σ𝑦 ∈ (𝑥𝐵)((𝐹𝐵)‘𝑦)
232231a1i 11 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑥 ∈ (𝒫 𝑈 ∩ Fin)) → Σ𝑦 ∈ (𝑥𝐵)(𝐹𝑦) = Σ𝑦 ∈ (𝑥𝐵)((𝐹𝐵)‘𝑦))
2332323adant3 1079 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑥 ∈ (𝒫 𝑈 ∩ Fin) ∧ 𝑟 = Σ𝑦𝑥 (𝐹𝑦)) → Σ𝑦 ∈ (𝑥𝐵)(𝐹𝑦) = Σ𝑦 ∈ (𝑥𝐵)((𝐹𝐵)‘𝑦))
234 sumeq1 14353 . . . . . . . . . . . . . . . . . . . 20 (𝑧 = (𝑥𝐵) → Σ𝑦𝑧 ((𝐹𝐵)‘𝑦) = Σ𝑦 ∈ (𝑥𝐵)((𝐹𝐵)‘𝑦))
235234eqeq2d 2631 . . . . . . . . . . . . . . . . . . 19 (𝑧 = (𝑥𝐵) → (Σ𝑦 ∈ (𝑥𝐵)(𝐹𝑦) = Σ𝑦𝑧 ((𝐹𝐵)‘𝑦) ↔ Σ𝑦 ∈ (𝑥𝐵)(𝐹𝑦) = Σ𝑦 ∈ (𝑥𝐵)((𝐹𝐵)‘𝑦)))
236235rspcev 3295 . . . . . . . . . . . . . . . . . 18 (((𝑥𝐵) ∈ (𝒫 𝐵 ∩ Fin) ∧ Σ𝑦 ∈ (𝑥𝐵)(𝐹𝑦) = Σ𝑦 ∈ (𝑥𝐵)((𝐹𝐵)‘𝑦)) → ∃𝑧 ∈ (𝒫 𝐵 ∩ Fin)Σ𝑦 ∈ (𝑥𝐵)(𝐹𝑦) = Σ𝑦𝑧 ((𝐹𝐵)‘𝑦))
237227, 233, 236syl2anc 692 . . . . . . . . . . . . . . . . 17 ((𝜑𝑥 ∈ (𝒫 𝑈 ∩ Fin) ∧ 𝑟 = Σ𝑦𝑥 (𝐹𝑦)) → ∃𝑧 ∈ (𝒫 𝐵 ∩ Fin)Σ𝑦 ∈ (𝑥𝐵)(𝐹𝑦) = Σ𝑦𝑧 ((𝐹𝐵)‘𝑦))
238 sumex 14352 . . . . . . . . . . . . . . . . . 18 Σ𝑦 ∈ (𝑥𝐵)(𝐹𝑦) ∈ V
239238a1i 11 . . . . . . . . . . . . . . . . 17 ((𝜑𝑥 ∈ (𝒫 𝑈 ∩ Fin) ∧ 𝑟 = Σ𝑦𝑥 (𝐹𝑦)) → Σ𝑦 ∈ (𝑥𝐵)(𝐹𝑦) ∈ V)
240216, 237, 239elrnmptd 38840 . . . . . . . . . . . . . . . 16 ((𝜑𝑥 ∈ (𝒫 𝑈 ∩ Fin) ∧ 𝑟 = Σ𝑦𝑥 (𝐹𝑦)) → Σ𝑦 ∈ (𝑥𝐵)(𝐹𝑦) ∈ ran (𝑥 ∈ (𝒫 𝐵 ∩ Fin) ↦ Σ𝑦𝑥 ((𝐹𝐵)‘𝑦)))
241 simp3 1061 . . . . . . . . . . . . . . . . 17 ((𝜑𝑥 ∈ (𝒫 𝑈 ∩ Fin) ∧ 𝑟 = Σ𝑦𝑥 (𝐹𝑦)) → 𝑟 = Σ𝑦𝑥 (𝐹𝑦))
242186a1i 11 . . . . . . . . . . . . . . . . . . . . 21 (𝜑 → (𝑥𝐴) ⊆ 𝐴)
243217a1i 11 . . . . . . . . . . . . . . . . . . . . 21 (𝜑 → (𝑥𝐵) ⊆ 𝐵)
244 ssin0 38708 . . . . . . . . . . . . . . . . . . . . 21 (((𝐴𝐵) = ∅ ∧ (𝑥𝐴) ⊆ 𝐴 ∧ (𝑥𝐵) ⊆ 𝐵) → ((𝑥𝐴) ∩ (𝑥𝐵)) = ∅)
245132, 242, 243, 244syl3anc 1323 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → ((𝑥𝐴) ∩ (𝑥𝐵)) = ∅)
246245adantr 481 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑥 ∈ (𝒫 𝑈 ∩ Fin)) → ((𝑥𝐴) ∩ (𝑥𝐵)) = ∅)
247 elinel1 3777 . . . . . . . . . . . . . . . . . . . . . 22 (𝑥 ∈ (𝒫 𝑈 ∩ Fin) → 𝑥 ∈ 𝒫 𝑈)
248 elpwi 4140 . . . . . . . . . . . . . . . . . . . . . 22 (𝑥 ∈ 𝒫 𝑈𝑥𝑈)
249247, 248syl 17 . . . . . . . . . . . . . . . . . . . . 21 (𝑥 ∈ (𝒫 𝑈 ∩ Fin) → 𝑥𝑈)
2504ineq2i 3789 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑥𝑈) = (𝑥 ∩ (𝐴𝐵))
251250a1i 11 . . . . . . . . . . . . . . . . . . . . . 22 (𝑥𝑈 → (𝑥𝑈) = (𝑥 ∩ (𝐴𝐵)))
252 dfss 3570 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑥𝑈𝑥 = (𝑥𝑈))
253252biimpi 206 . . . . . . . . . . . . . . . . . . . . . 22 (𝑥𝑈𝑥 = (𝑥𝑈))
254 indi 3849 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑥 ∩ (𝐴𝐵)) = ((𝑥𝐴) ∪ (𝑥𝐵))
255254eqcomi 2630 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑥𝐴) ∪ (𝑥𝐵)) = (𝑥 ∩ (𝐴𝐵))
256255a1i 11 . . . . . . . . . . . . . . . . . . . . . 22 (𝑥𝑈 → ((𝑥𝐴) ∪ (𝑥𝐵)) = (𝑥 ∩ (𝐴𝐵)))
257251, 253, 2563eqtr4d 2665 . . . . . . . . . . . . . . . . . . . . 21 (𝑥𝑈𝑥 = ((𝑥𝐴) ∪ (𝑥𝐵)))
258249, 257syl 17 . . . . . . . . . . . . . . . . . . . 20 (𝑥 ∈ (𝒫 𝑈 ∩ Fin) → 𝑥 = ((𝑥𝐴) ∪ (𝑥𝐵)))
259258adantl 482 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑥 ∈ (𝒫 𝑈 ∩ Fin)) → 𝑥 = ((𝑥𝐴) ∪ (𝑥𝐵)))
260199adantl 482 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑥 ∈ (𝒫 𝑈 ∩ Fin)) → 𝑥 ∈ Fin)
261144ad2antrr 761 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑥 ∈ (𝒫 𝑈 ∩ Fin)) ∧ 𝑦𝑥) → 𝐹:𝑈⟶(0[,)+∞))
262249sselda 3583 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑥 ∈ (𝒫 𝑈 ∩ Fin) ∧ 𝑦𝑥) → 𝑦𝑈)
263262adantll 749 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑥 ∈ (𝒫 𝑈 ∩ Fin)) ∧ 𝑦𝑥) → 𝑦𝑈)
264261, 263ffvelrnd 6316 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑥 ∈ (𝒫 𝑈 ∩ Fin)) ∧ 𝑦𝑥) → (𝐹𝑦) ∈ (0[,)+∞))
265143, 264sseldi 3581 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑥 ∈ (𝒫 𝑈 ∩ Fin)) ∧ 𝑦𝑥) → (𝐹𝑦) ∈ ℂ)
266246, 259, 260, 265fsumsplit 14404 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑥 ∈ (𝒫 𝑈 ∩ Fin)) → Σ𝑦𝑥 (𝐹𝑦) = (Σ𝑦 ∈ (𝑥𝐴)(𝐹𝑦) + Σ𝑦 ∈ (𝑥𝐵)(𝐹𝑦)))
2672663adant3 1079 . . . . . . . . . . . . . . . . 17 ((𝜑𝑥 ∈ (𝒫 𝑈 ∩ Fin) ∧ 𝑟 = Σ𝑦𝑥 (𝐹𝑦)) → Σ𝑦𝑥 (𝐹𝑦) = (Σ𝑦 ∈ (𝑥𝐴)(𝐹𝑦) + Σ𝑦 ∈ (𝑥𝐵)(𝐹𝑦)))
268241, 267eqtrd 2655 . . . . . . . . . . . . . . . 16 ((𝜑𝑥 ∈ (𝒫 𝑈 ∩ Fin) ∧ 𝑟 = Σ𝑦𝑥 (𝐹𝑦)) → 𝑟 = (Σ𝑦 ∈ (𝑥𝐴)(𝐹𝑦) + Σ𝑦 ∈ (𝑥𝐵)(𝐹𝑦)))
269 oveq2 6612 . . . . . . . . . . . . . . . . . 18 (𝑢 = Σ𝑦 ∈ (𝑥𝐵)(𝐹𝑦) → (Σ𝑦 ∈ (𝑥𝐴)(𝐹𝑦) + 𝑢) = (Σ𝑦 ∈ (𝑥𝐴)(𝐹𝑦) + Σ𝑦 ∈ (𝑥𝐵)(𝐹𝑦)))
270269eqeq2d 2631 . . . . . . . . . . . . . . . . 17 (𝑢 = Σ𝑦 ∈ (𝑥𝐵)(𝐹𝑦) → (𝑟 = (Σ𝑦 ∈ (𝑥𝐴)(𝐹𝑦) + 𝑢) ↔ 𝑟 = (Σ𝑦 ∈ (𝑥𝐴)(𝐹𝑦) + Σ𝑦 ∈ (𝑥𝐵)(𝐹𝑦))))
271270rspcev 3295 . . . . . . . . . . . . . . . 16 ((Σ𝑦 ∈ (𝑥𝐵)(𝐹𝑦) ∈ ran (𝑥 ∈ (𝒫 𝐵 ∩ Fin) ↦ Σ𝑦𝑥 ((𝐹𝐵)‘𝑦)) ∧ 𝑟 = (Σ𝑦 ∈ (𝑥𝐴)(𝐹𝑦) + Σ𝑦 ∈ (𝑥𝐵)(𝐹𝑦))) → ∃𝑢 ∈ ran (𝑥 ∈ (𝒫 𝐵 ∩ Fin) ↦ Σ𝑦𝑥 ((𝐹𝐵)‘𝑦))𝑟 = (Σ𝑦 ∈ (𝑥𝐴)(𝐹𝑦) + 𝑢))
272240, 268, 271syl2anc 692 . . . . . . . . . . . . . . 15 ((𝜑𝑥 ∈ (𝒫 𝑈 ∩ Fin) ∧ 𝑟 = Σ𝑦𝑥 (𝐹𝑦)) → ∃𝑢 ∈ ran (𝑥 ∈ (𝒫 𝐵 ∩ Fin) ↦ Σ𝑦𝑥 ((𝐹𝐵)‘𝑦))𝑟 = (Σ𝑦 ∈ (𝑥𝐴)(𝐹𝑦) + 𝑢))
273 oveq1 6611 . . . . . . . . . . . . . . . . . 18 (𝑣 = Σ𝑦 ∈ (𝑥𝐴)(𝐹𝑦) → (𝑣 + 𝑢) = (Σ𝑦 ∈ (𝑥𝐴)(𝐹𝑦) + 𝑢))
274273eqeq2d 2631 . . . . . . . . . . . . . . . . 17 (𝑣 = Σ𝑦 ∈ (𝑥𝐴)(𝐹𝑦) → (𝑟 = (𝑣 + 𝑢) ↔ 𝑟 = (Σ𝑦 ∈ (𝑥𝐴)(𝐹𝑦) + 𝑢)))
275274rexbidv 3045 . . . . . . . . . . . . . . . 16 (𝑣 = Σ𝑦 ∈ (𝑥𝐴)(𝐹𝑦) → (∃𝑢 ∈ ran (𝑥 ∈ (𝒫 𝐵 ∩ Fin) ↦ Σ𝑦𝑥 ((𝐹𝐵)‘𝑦))𝑟 = (𝑣 + 𝑢) ↔ ∃𝑢 ∈ ran (𝑥 ∈ (𝒫 𝐵 ∩ Fin) ↦ Σ𝑦𝑥 ((𝐹𝐵)‘𝑦))𝑟 = (Σ𝑦 ∈ (𝑥𝐴)(𝐹𝑦) + 𝑢)))
276275rspcev 3295 . . . . . . . . . . . . . . 15 ((Σ𝑦 ∈ (𝑥𝐴)(𝐹𝑦) ∈ ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑦𝑥 ((𝐹𝐴)‘𝑦)) ∧ ∃𝑢 ∈ ran (𝑥 ∈ (𝒫 𝐵 ∩ Fin) ↦ Σ𝑦𝑥 ((𝐹𝐵)‘𝑦))𝑟 = (Σ𝑦 ∈ (𝑥𝐴)(𝐹𝑦) + 𝑢)) → ∃𝑣 ∈ ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑦𝑥 ((𝐹𝐴)‘𝑦))∃𝑢 ∈ ran (𝑥 ∈ (𝒫 𝐵 ∩ Fin) ↦ Σ𝑦𝑥 ((𝐹𝐵)‘𝑦))𝑟 = (𝑣 + 𝑢))
277214, 272, 276syl2anc 692 . . . . . . . . . . . . . 14 ((𝜑𝑥 ∈ (𝒫 𝑈 ∩ Fin) ∧ 𝑟 = Σ𝑦𝑥 (𝐹𝑦)) → ∃𝑣 ∈ ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑦𝑥 ((𝐹𝐴)‘𝑦))∃𝑢 ∈ ran (𝑥 ∈ (𝒫 𝐵 ∩ Fin) ↦ Σ𝑦𝑥 ((𝐹𝐵)‘𝑦))𝑟 = (𝑣 + 𝑢))
2782773exp 1261 . . . . . . . . . . . . 13 (𝜑 → (𝑥 ∈ (𝒫 𝑈 ∩ Fin) → (𝑟 = Σ𝑦𝑥 (𝐹𝑦) → ∃𝑣 ∈ ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑦𝑥 ((𝐹𝐴)‘𝑦))∃𝑢 ∈ ran (𝑥 ∈ (𝒫 𝐵 ∩ Fin) ↦ Σ𝑦𝑥 ((𝐹𝐵)‘𝑦))𝑟 = (𝑣 + 𝑢))))
279278adantr 481 . . . . . . . . . . . 12 ((𝜑𝑟 ∈ ran (𝑥 ∈ (𝒫 𝑈 ∩ Fin) ↦ Σ𝑦𝑥 (𝐹𝑦))) → (𝑥 ∈ (𝒫 𝑈 ∩ Fin) → (𝑟 = Σ𝑦𝑥 (𝐹𝑦) → ∃𝑣 ∈ ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑦𝑥 ((𝐹𝐴)‘𝑦))∃𝑢 ∈ ran (𝑥 ∈ (𝒫 𝐵 ∩ Fin) ↦ Σ𝑦𝑥 ((𝐹𝐵)‘𝑦))𝑟 = (𝑣 + 𝑢))))
280178, 185, 279rexlimd 3019 . . . . . . . . . . 11 ((𝜑𝑟 ∈ ran (𝑥 ∈ (𝒫 𝑈 ∩ Fin) ↦ Σ𝑦𝑥 (𝐹𝑦))) → (∃𝑥 ∈ (𝒫 𝑈 ∩ Fin)𝑟 = Σ𝑦𝑥 (𝐹𝑦) → ∃𝑣 ∈ ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑦𝑥 ((𝐹𝐴)‘𝑦))∃𝑢 ∈ ran (𝑥 ∈ (𝒫 𝐵 ∩ Fin) ↦ Σ𝑦𝑥 ((𝐹𝐵)‘𝑦))𝑟 = (𝑣 + 𝑢)))
281172, 280mpd 15 . . . . . . . . . 10 ((𝜑𝑟 ∈ ran (𝑥 ∈ (𝒫 𝑈 ∩ Fin) ↦ Σ𝑦𝑥 (𝐹𝑦))) → ∃𝑣 ∈ ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑦𝑥 ((𝐹𝐴)‘𝑦))∃𝑢 ∈ ran (𝑥 ∈ (𝒫 𝐵 ∩ Fin) ↦ Σ𝑦𝑥 ((𝐹𝐵)‘𝑦))𝑟 = (𝑣 + 𝑢))
282281, 59sylibr 224 . . . . . . . . 9 ((𝜑𝑟 ∈ ran (𝑥 ∈ (𝒫 𝑈 ∩ Fin) ↦ Σ𝑦𝑥 (𝐹𝑦))) → 𝑟 ∈ {𝑧 ∣ ∃𝑣 ∈ ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑦𝑥 ((𝐹𝐴)‘𝑦))∃𝑢 ∈ ran (𝑥 ∈ (𝒫 𝐵 ∩ Fin) ↦ Σ𝑦𝑥 ((𝐹𝐵)‘𝑦))𝑧 = (𝑣 + 𝑢)})
283282ex 450 . . . . . . . 8 (𝜑 → (𝑟 ∈ ran (𝑥 ∈ (𝒫 𝑈 ∩ Fin) ↦ Σ𝑦𝑥 (𝐹𝑦)) → 𝑟 ∈ {𝑧 ∣ ∃𝑣 ∈ ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑦𝑥 ((𝐹𝐴)‘𝑦))∃𝑢 ∈ ran (𝑥 ∈ (𝒫 𝐵 ∩ Fin) ↦ Σ𝑦𝑥 ((𝐹𝐵)‘𝑦))𝑧 = (𝑣 + 𝑢)}))
284169, 283impbid 202 . . . . . . 7 (𝜑 → (𝑟 ∈ {𝑧 ∣ ∃𝑣 ∈ ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑦𝑥 ((𝐹𝐴)‘𝑦))∃𝑢 ∈ ran (𝑥 ∈ (𝒫 𝐵 ∩ Fin) ↦ Σ𝑦𝑥 ((𝐹𝐵)‘𝑦))𝑧 = (𝑣 + 𝑢)} ↔ 𝑟 ∈ ran (𝑥 ∈ (𝒫 𝑈 ∩ Fin) ↦ Σ𝑦𝑥 (𝐹𝑦))))
285284alrimiv 1852 . . . . . 6 (𝜑 → ∀𝑟(𝑟 ∈ {𝑧 ∣ ∃𝑣 ∈ ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑦𝑥 ((𝐹𝐴)‘𝑦))∃𝑢 ∈ ran (𝑥 ∈ (𝒫 𝐵 ∩ Fin) ↦ Σ𝑦𝑥 ((𝐹𝐵)‘𝑦))𝑧 = (𝑣 + 𝑢)} ↔ 𝑟 ∈ ran (𝑥 ∈ (𝒫 𝑈 ∩ Fin) ↦ Σ𝑦𝑥 (𝐹𝑦))))
286 dfcleq 2615 . . . . . 6 ({𝑧 ∣ ∃𝑣 ∈ ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑦𝑥 ((𝐹𝐴)‘𝑦))∃𝑢 ∈ ran (𝑥 ∈ (𝒫 𝐵 ∩ Fin) ↦ Σ𝑦𝑥 ((𝐹𝐵)‘𝑦))𝑧 = (𝑣 + 𝑢)} = ran (𝑥 ∈ (𝒫 𝑈 ∩ Fin) ↦ Σ𝑦𝑥 (𝐹𝑦)) ↔ ∀𝑟(𝑟 ∈ {𝑧 ∣ ∃𝑣 ∈ ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑦𝑥 ((𝐹𝐴)‘𝑦))∃𝑢 ∈ ran (𝑥 ∈ (𝒫 𝐵 ∩ Fin) ↦ Σ𝑦𝑥 ((𝐹𝐵)‘𝑦))𝑧 = (𝑣 + 𝑢)} ↔ 𝑟 ∈ ran (𝑥 ∈ (𝒫 𝑈 ∩ Fin) ↦ Σ𝑦𝑥 (𝐹𝑦))))
287285, 286sylibr 224 . . . . 5 (𝜑 → {𝑧 ∣ ∃𝑣 ∈ ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑦𝑥 ((𝐹𝐴)‘𝑦))∃𝑢 ∈ ran (𝑥 ∈ (𝒫 𝐵 ∩ Fin) ↦ Σ𝑦𝑥 ((𝐹𝐵)‘𝑦))𝑧 = (𝑣 + 𝑢)} = ran (𝑥 ∈ (𝒫 𝑈 ∩ Fin) ↦ Σ𝑦𝑥 (𝐹𝑦)))
288287supeq1d 8296 . . . 4 (𝜑 → sup({𝑧 ∣ ∃𝑣 ∈ ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑦𝑥 ((𝐹𝐴)‘𝑦))∃𝑢 ∈ ran (𝑥 ∈ (𝒫 𝐵 ∩ Fin) ↦ Σ𝑦𝑥 ((𝐹𝐵)‘𝑦))𝑧 = (𝑣 + 𝑢)}, ℝ, < ) = sup(ran (𝑥 ∈ (𝒫 𝑈 ∩ Fin) ↦ Σ𝑦𝑥 (𝐹𝑦)), ℝ, < ))
28926, 53, 2883eqtrrd 2660 . . 3 (𝜑 → sup(ran (𝑥 ∈ (𝒫 𝑈 ∩ Fin) ↦ Σ𝑦𝑥 (𝐹𝑦)), ℝ, < ) = (sup(ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑦𝑥 ((𝐹𝐴)‘𝑦)), ℝ, < ) +𝑒 sup(ran (𝑥 ∈ (𝒫 𝐵 ∩ Fin) ↦ Σ𝑦𝑥 ((𝐹𝐵)‘𝑦)), ℝ, < )))
29013, 2, 14sge0supre 39913 . . 3 (𝜑 → (Σ^𝐹) = sup(ran (𝑥 ∈ (𝒫 𝑈 ∩ Fin) ↦ Σ𝑦𝑥 (𝐹𝑦)), ℝ, < ))
29116, 23oveq12d 6622 . . 3 (𝜑 → ((Σ^‘(𝐹𝐴)) +𝑒^‘(𝐹𝐵))) = (sup(ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑦𝑥 ((𝐹𝐴)‘𝑦)), ℝ, < ) +𝑒 sup(ran (𝑥 ∈ (𝒫 𝐵 ∩ Fin) ↦ Σ𝑦𝑥 ((𝐹𝐵)‘𝑦)), ℝ, < )))
292289, 290, 2913eqtr4d 2665 . 2 (𝜑 → (Σ^𝐹) = ((Σ^‘(𝐹𝐴)) +𝑒^‘(𝐹𝐵))))
293 rexadd 12006 . . 3 (((Σ^‘(𝐹𝐴)) ∈ ℝ ∧ (Σ^‘(𝐹𝐵)) ∈ ℝ) → ((Σ^‘(𝐹𝐴)) +𝑒^‘(𝐹𝐵))) = ((Σ^‘(𝐹𝐴)) + (Σ^‘(𝐹𝐵))))
29415, 22, 293syl2anc 692 . 2 (𝜑 → ((Σ^‘(𝐹𝐴)) +𝑒^‘(𝐹𝐵))) = ((Σ^‘(𝐹𝐴)) + (Σ^‘(𝐹𝐵))))
295292, 294eqtrd 2655 1 (𝜑 → (Σ^𝐹) = ((Σ^‘(𝐹𝐴)) + (Σ^‘(𝐹𝐵))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 196  wa 384  w3a 1036  wal 1478   = wceq 1480  wcel 1987  {cab 2607  wne 2790  wral 2907  wrex 2908  Vcvv 3186  cun 3553  cin 3554  wss 3555  c0 3891  𝒫 cpw 4130   class class class wbr 4613  cmpt 4673  ran crn 5075  cres 5076  wf 5843  cfv 5847  (class class class)co 6604  Fincfn 7899  supcsup 8290  cc 9878  cr 9879  0cc0 9880   + caddc 9883  +∞cpnf 10015  *cxr 10017   < clt 10018  cle 10019   +𝑒 cxad 11888  [,)cico 12119  [,]cicc 12120  Σcsu 14350  Σ^csumge0 39886
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-rep 4731  ax-sep 4741  ax-nul 4749  ax-pow 4803  ax-pr 4867  ax-un 6902  ax-inf2 8482  ax-cnex 9936  ax-resscn 9937  ax-1cn 9938  ax-icn 9939  ax-addcl 9940  ax-addrcl 9941  ax-mulcl 9942  ax-mulrcl 9943  ax-mulcom 9944  ax-addass 9945  ax-mulass 9946  ax-distr 9947  ax-i2m1 9948  ax-1ne0 9949  ax-1rid 9950  ax-rnegex 9951  ax-rrecex 9952  ax-cnre 9953  ax-pre-lttri 9954  ax-pre-lttrn 9955  ax-pre-ltadd 9956  ax-pre-mulgt0 9957  ax-pre-sup 9958
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-fal 1486  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-nel 2894  df-ral 2912  df-rex 2913  df-reu 2914  df-rmo 2915  df-rab 2916  df-v 3188  df-sbc 3418  df-csb 3515  df-dif 3558  df-un 3560  df-in 3562  df-ss 3569  df-pss 3571  df-nul 3892  df-if 4059  df-pw 4132  df-sn 4149  df-pr 4151  df-tp 4153  df-op 4155  df-uni 4403  df-int 4441  df-iun 4487  df-br 4614  df-opab 4674  df-mpt 4675  df-tr 4713  df-eprel 4985  df-id 4989  df-po 4995  df-so 4996  df-fr 5033  df-se 5034  df-we 5035  df-xp 5080  df-rel 5081  df-cnv 5082  df-co 5083  df-dm 5084  df-rn 5085  df-res 5086  df-ima 5087  df-pred 5639  df-ord 5685  df-on 5686  df-lim 5687  df-suc 5688  df-iota 5810  df-fun 5849  df-fn 5850  df-f 5851  df-f1 5852  df-fo 5853  df-f1o 5854  df-fv 5855  df-isom 5856  df-riota 6565  df-ov 6607  df-oprab 6608  df-mpt2 6609  df-om 7013  df-1st 7113  df-2nd 7114  df-wrecs 7352  df-recs 7413  df-rdg 7451  df-1o 7505  df-oadd 7509  df-er 7687  df-en 7900  df-dom 7901  df-sdom 7902  df-fin 7903  df-sup 8292  df-oi 8359  df-card 8709  df-pnf 10020  df-mnf 10021  df-xr 10022  df-ltxr 10023  df-le 10024  df-sub 10212  df-neg 10213  df-div 10629  df-nn 10965  df-2 11023  df-3 11024  df-n0 11237  df-z 11322  df-uz 11632  df-rp 11777  df-xadd 11891  df-ico 12123  df-icc 12124  df-fz 12269  df-fzo 12407  df-seq 12742  df-exp 12801  df-hash 13058  df-cj 13773  df-re 13774  df-im 13775  df-sqrt 13909  df-abs 13910  df-clim 14153  df-sum 14351  df-sumge0 39887
This theorem is referenced by:  sge0split  39933
  Copyright terms: Public domain W3C validator