![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > esumeq1d | Structured version Visualization version GIF version |
Description: Equality theorem for an extended sum. (Contributed by Thierry Arnoux, 19-Oct-2017.) |
Ref | Expression |
---|---|
esumeq1d.0 | ⊢ Ⅎ𝑘𝜑 |
esumeq1d.1 | ⊢ (𝜑 → 𝐴 = 𝐵) |
Ref | Expression |
---|---|
esumeq1d | ⊢ (𝜑 → Σ*𝑘 ∈ 𝐴𝐶 = Σ*𝑘 ∈ 𝐵𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | esumeq1d.0 | . 2 ⊢ Ⅎ𝑘𝜑 | |
2 | esumeq1d.1 | . 2 ⊢ (𝜑 → 𝐴 = 𝐵) | |
3 | eqidd 2652 | . 2 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐶 = 𝐶) | |
4 | 1, 2, 3 | esumeq12dvaf 30221 | 1 ⊢ (𝜑 → Σ*𝑘 ∈ 𝐴𝐶 = Σ*𝑘 ∈ 𝐵𝐶) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 383 = wceq 1523 Ⅎwnf 1748 ∈ wcel 2030 Σ*cesum 30217 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1762 ax-4 1777 ax-5 1879 ax-6 1945 ax-7 1981 ax-9 2039 ax-10 2059 ax-11 2074 ax-12 2087 ax-13 2282 ax-ext 2631 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3an 1056 df-tru 1526 df-ex 1745 df-nf 1750 df-sb 1938 df-clab 2638 df-cleq 2644 df-clel 2647 df-nfc 2782 df-ral 2946 df-rex 2947 df-rab 2950 df-v 3233 df-dif 3610 df-un 3612 df-in 3614 df-ss 3621 df-nul 3949 df-if 4120 df-sn 4211 df-pr 4213 df-op 4217 df-uni 4469 df-br 4686 df-opab 4746 df-mpt 4763 df-iota 5889 df-fv 5934 df-ov 6693 df-esum 30218 |
This theorem is referenced by: esummono 30244 esumrnmpt2 30258 esumfzf 30259 hasheuni 30275 esum2dlem 30282 measvuni 30405 ddemeas 30427 omssubadd 30490 carsggect 30508 |
Copyright terms: Public domain | W3C validator |