Users' Mathboxes Mathbox for ML < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  finxpreclem2 Structured version   Visualization version   GIF version

Theorem finxpreclem2 32851
Description: Lemma for ↑↑ recursion theorems. (Contributed by ML, 17-Oct-2020.)
Assertion
Ref Expression
finxpreclem2 ((𝑋 ∈ V ∧ ¬ 𝑋𝑈) → ¬ ∅ = ((𝑛 ∈ ω, 𝑥 ∈ V ↦ if((𝑛 = 1𝑜𝑥𝑈), ∅, if(𝑥 ∈ (V × 𝑈), ⟨ 𝑛, (1st𝑥)⟩, ⟨𝑛, 𝑥⟩)))‘⟨1𝑜, 𝑋⟩))
Distinct variable groups:   𝑈,𝑛,𝑥   𝑛,𝑋,𝑥

Proof of Theorem finxpreclem2
StepHypRef Expression
1 nfv 1845 . . . . . 6 𝑥(𝑋 ∈ V ∧ ¬ 𝑋𝑈)
2 nfmpt22 6677 . . . . . . . 8 𝑥(𝑛 ∈ ω, 𝑥 ∈ V ↦ if((𝑛 = 1𝑜𝑥𝑈), ∅, if(𝑥 ∈ (V × 𝑈), ⟨ 𝑛, (1st𝑥)⟩, ⟨𝑛, 𝑥⟩)))
3 nfcv 2767 . . . . . . . 8 𝑥⟨1𝑜, 𝑋
42, 3nffv 6157 . . . . . . 7 𝑥((𝑛 ∈ ω, 𝑥 ∈ V ↦ if((𝑛 = 1𝑜𝑥𝑈), ∅, if(𝑥 ∈ (V × 𝑈), ⟨ 𝑛, (1st𝑥)⟩, ⟨𝑛, 𝑥⟩)))‘⟨1𝑜, 𝑋⟩)
5 nfcv 2767 . . . . . . 7 𝑥
64, 5nfne 2896 . . . . . 6 𝑥((𝑛 ∈ ω, 𝑥 ∈ V ↦ if((𝑛 = 1𝑜𝑥𝑈), ∅, if(𝑥 ∈ (V × 𝑈), ⟨ 𝑛, (1st𝑥)⟩, ⟨𝑛, 𝑥⟩)))‘⟨1𝑜, 𝑋⟩) ≠ ∅
71, 6nfim 1827 . . . . 5 𝑥((𝑋 ∈ V ∧ ¬ 𝑋𝑈) → ((𝑛 ∈ ω, 𝑥 ∈ V ↦ if((𝑛 = 1𝑜𝑥𝑈), ∅, if(𝑥 ∈ (V × 𝑈), ⟨ 𝑛, (1st𝑥)⟩, ⟨𝑛, 𝑥⟩)))‘⟨1𝑜, 𝑋⟩) ≠ ∅)
8 nfv 1845 . . . . . . 7 𝑛 𝑥 = 𝑋
9 nfv 1845 . . . . . . . 8 𝑛(𝑋 ∈ V ∧ ¬ 𝑋𝑈)
10 nfmpt21 6676 . . . . . . . . . 10 𝑛(𝑛 ∈ ω, 𝑥 ∈ V ↦ if((𝑛 = 1𝑜𝑥𝑈), ∅, if(𝑥 ∈ (V × 𝑈), ⟨ 𝑛, (1st𝑥)⟩, ⟨𝑛, 𝑥⟩)))
11 nfcv 2767 . . . . . . . . . 10 𝑛⟨1𝑜, 𝑋
1210, 11nffv 6157 . . . . . . . . 9 𝑛((𝑛 ∈ ω, 𝑥 ∈ V ↦ if((𝑛 = 1𝑜𝑥𝑈), ∅, if(𝑥 ∈ (V × 𝑈), ⟨ 𝑛, (1st𝑥)⟩, ⟨𝑛, 𝑥⟩)))‘⟨1𝑜, 𝑋⟩)
13 nfcv 2767 . . . . . . . . 9 𝑛
1412, 13nfne 2896 . . . . . . . 8 𝑛((𝑛 ∈ ω, 𝑥 ∈ V ↦ if((𝑛 = 1𝑜𝑥𝑈), ∅, if(𝑥 ∈ (V × 𝑈), ⟨ 𝑛, (1st𝑥)⟩, ⟨𝑛, 𝑥⟩)))‘⟨1𝑜, 𝑋⟩) ≠ ∅
159, 14nfim 1827 . . . . . . 7 𝑛((𝑋 ∈ V ∧ ¬ 𝑋𝑈) → ((𝑛 ∈ ω, 𝑥 ∈ V ↦ if((𝑛 = 1𝑜𝑥𝑈), ∅, if(𝑥 ∈ (V × 𝑈), ⟨ 𝑛, (1st𝑥)⟩, ⟨𝑛, 𝑥⟩)))‘⟨1𝑜, 𝑋⟩) ≠ ∅)
168, 15nfim 1827 . . . . . 6 𝑛(𝑥 = 𝑋 → ((𝑋 ∈ V ∧ ¬ 𝑋𝑈) → ((𝑛 ∈ ω, 𝑥 ∈ V ↦ if((𝑛 = 1𝑜𝑥𝑈), ∅, if(𝑥 ∈ (V × 𝑈), ⟨ 𝑛, (1st𝑥)⟩, ⟨𝑛, 𝑥⟩)))‘⟨1𝑜, 𝑋⟩) ≠ ∅))
17 1onn 7665 . . . . . . 7 1𝑜 ∈ ω
1817elexi 3204 . . . . . 6 1𝑜 ∈ V
19 df-ov 6608 . . . . . . . . . 10 (1𝑜(𝑛 ∈ ω, 𝑥 ∈ V ↦ if((𝑛 = 1𝑜𝑥𝑈), ∅, if(𝑥 ∈ (V × 𝑈), ⟨ 𝑛, (1st𝑥)⟩, ⟨𝑛, 𝑥⟩)))𝑋) = ((𝑛 ∈ ω, 𝑥 ∈ V ↦ if((𝑛 = 1𝑜𝑥𝑈), ∅, if(𝑥 ∈ (V × 𝑈), ⟨ 𝑛, (1st𝑥)⟩, ⟨𝑛, 𝑥⟩)))‘⟨1𝑜, 𝑋⟩)
20 0ex 4755 . . . . . . . . . . . . . . . 16 ∅ ∈ V
21 opex 4898 . . . . . . . . . . . . . . . . 17 𝑛, (1st𝑥)⟩ ∈ V
22 opex 4898 . . . . . . . . . . . . . . . . 17 𝑛, 𝑥⟩ ∈ V
2321, 22ifex 4133 . . . . . . . . . . . . . . . 16 if(𝑥 ∈ (V × 𝑈), ⟨ 𝑛, (1st𝑥)⟩, ⟨𝑛, 𝑥⟩) ∈ V
2420, 23ifex 4133 . . . . . . . . . . . . . . 15 if((𝑛 = 1𝑜𝑥𝑈), ∅, if(𝑥 ∈ (V × 𝑈), ⟨ 𝑛, (1st𝑥)⟩, ⟨𝑛, 𝑥⟩)) ∈ V
2524csbex 4758 . . . . . . . . . . . . . 14 𝑋 / 𝑥if((𝑛 = 1𝑜𝑥𝑈), ∅, if(𝑥 ∈ (V × 𝑈), ⟨ 𝑛, (1st𝑥)⟩, ⟨𝑛, 𝑥⟩)) ∈ V
2625csbex 4758 . . . . . . . . . . . . 13 1𝑜 / 𝑛𝑋 / 𝑥if((𝑛 = 1𝑜𝑥𝑈), ∅, if(𝑥 ∈ (V × 𝑈), ⟨ 𝑛, (1st𝑥)⟩, ⟨𝑛, 𝑥⟩)) ∈ V
27 eqid 2626 . . . . . . . . . . . . . 14 (𝑛 ∈ ω, 𝑥 ∈ V ↦ if((𝑛 = 1𝑜𝑥𝑈), ∅, if(𝑥 ∈ (V × 𝑈), ⟨ 𝑛, (1st𝑥)⟩, ⟨𝑛, 𝑥⟩))) = (𝑛 ∈ ω, 𝑥 ∈ V ↦ if((𝑛 = 1𝑜𝑥𝑈), ∅, if(𝑥 ∈ (V × 𝑈), ⟨ 𝑛, (1st𝑥)⟩, ⟨𝑛, 𝑥⟩)))
2827ovmpt2s 6738 . . . . . . . . . . . . 13 ((1𝑜 ∈ ω ∧ 𝑋 ∈ V ∧ 1𝑜 / 𝑛𝑋 / 𝑥if((𝑛 = 1𝑜𝑥𝑈), ∅, if(𝑥 ∈ (V × 𝑈), ⟨ 𝑛, (1st𝑥)⟩, ⟨𝑛, 𝑥⟩)) ∈ V) → (1𝑜(𝑛 ∈ ω, 𝑥 ∈ V ↦ if((𝑛 = 1𝑜𝑥𝑈), ∅, if(𝑥 ∈ (V × 𝑈), ⟨ 𝑛, (1st𝑥)⟩, ⟨𝑛, 𝑥⟩)))𝑋) = 1𝑜 / 𝑛𝑋 / 𝑥if((𝑛 = 1𝑜𝑥𝑈), ∅, if(𝑥 ∈ (V × 𝑈), ⟨ 𝑛, (1st𝑥)⟩, ⟨𝑛, 𝑥⟩)))
2917, 26, 28mp3an13 1412 . . . . . . . . . . . 12 (𝑋 ∈ V → (1𝑜(𝑛 ∈ ω, 𝑥 ∈ V ↦ if((𝑛 = 1𝑜𝑥𝑈), ∅, if(𝑥 ∈ (V × 𝑈), ⟨ 𝑛, (1st𝑥)⟩, ⟨𝑛, 𝑥⟩)))𝑋) = 1𝑜 / 𝑛𝑋 / 𝑥if((𝑛 = 1𝑜𝑥𝑈), ∅, if(𝑥 ∈ (V × 𝑈), ⟨ 𝑛, (1st𝑥)⟩, ⟨𝑛, 𝑥⟩)))
3029adantr 481 . . . . . . . . . . 11 ((𝑋 ∈ V ∧ (¬ 𝑋𝑈 ∧ (𝑛 = 1𝑜𝑥 = 𝑋))) → (1𝑜(𝑛 ∈ ω, 𝑥 ∈ V ↦ if((𝑛 = 1𝑜𝑥𝑈), ∅, if(𝑥 ∈ (V × 𝑈), ⟨ 𝑛, (1st𝑥)⟩, ⟨𝑛, 𝑥⟩)))𝑋) = 1𝑜 / 𝑛𝑋 / 𝑥if((𝑛 = 1𝑜𝑥𝑈), ∅, if(𝑥 ∈ (V × 𝑈), ⟨ 𝑛, (1st𝑥)⟩, ⟨𝑛, 𝑥⟩)))
31 csbeq1a 3528 . . . . . . . . . . . . . . 15 (𝑥 = 𝑋 → if((𝑛 = 1𝑜𝑥𝑈), ∅, if(𝑥 ∈ (V × 𝑈), ⟨ 𝑛, (1st𝑥)⟩, ⟨𝑛, 𝑥⟩)) = 𝑋 / 𝑥if((𝑛 = 1𝑜𝑥𝑈), ∅, if(𝑥 ∈ (V × 𝑈), ⟨ 𝑛, (1st𝑥)⟩, ⟨𝑛, 𝑥⟩)))
32 csbeq1a 3528 . . . . . . . . . . . . . . 15 (𝑛 = 1𝑜𝑋 / 𝑥if((𝑛 = 1𝑜𝑥𝑈), ∅, if(𝑥 ∈ (V × 𝑈), ⟨ 𝑛, (1st𝑥)⟩, ⟨𝑛, 𝑥⟩)) = 1𝑜 / 𝑛𝑋 / 𝑥if((𝑛 = 1𝑜𝑥𝑈), ∅, if(𝑥 ∈ (V × 𝑈), ⟨ 𝑛, (1st𝑥)⟩, ⟨𝑛, 𝑥⟩)))
3331, 32sylan9eqr 2682 . . . . . . . . . . . . . 14 ((𝑛 = 1𝑜𝑥 = 𝑋) → if((𝑛 = 1𝑜𝑥𝑈), ∅, if(𝑥 ∈ (V × 𝑈), ⟨ 𝑛, (1st𝑥)⟩, ⟨𝑛, 𝑥⟩)) = 1𝑜 / 𝑛𝑋 / 𝑥if((𝑛 = 1𝑜𝑥𝑈), ∅, if(𝑥 ∈ (V × 𝑈), ⟨ 𝑛, (1st𝑥)⟩, ⟨𝑛, 𝑥⟩)))
3433adantl 482 . . . . . . . . . . . . 13 ((¬ 𝑋𝑈 ∧ (𝑛 = 1𝑜𝑥 = 𝑋)) → if((𝑛 = 1𝑜𝑥𝑈), ∅, if(𝑥 ∈ (V × 𝑈), ⟨ 𝑛, (1st𝑥)⟩, ⟨𝑛, 𝑥⟩)) = 1𝑜 / 𝑛𝑋 / 𝑥if((𝑛 = 1𝑜𝑥𝑈), ∅, if(𝑥 ∈ (V × 𝑈), ⟨ 𝑛, (1st𝑥)⟩, ⟨𝑛, 𝑥⟩)))
35 eleq1 2692 . . . . . . . . . . . . . . . . . . . 20 (𝑥 = 𝑋 → (𝑥𝑈𝑋𝑈))
3635notbid 308 . . . . . . . . . . . . . . . . . . 19 (𝑥 = 𝑋 → (¬ 𝑥𝑈 ↔ ¬ 𝑋𝑈))
3736biimprcd 240 . . . . . . . . . . . . . . . . . 18 𝑋𝑈 → (𝑥 = 𝑋 → ¬ 𝑥𝑈))
38 pm3.14 523 . . . . . . . . . . . . . . . . . . 19 ((¬ 𝑛 = 1𝑜 ∨ ¬ 𝑥𝑈) → ¬ (𝑛 = 1𝑜𝑥𝑈))
3938olcs 410 . . . . . . . . . . . . . . . . . 18 𝑥𝑈 → ¬ (𝑛 = 1𝑜𝑥𝑈))
4037, 39syl6 35 . . . . . . . . . . . . . . . . 17 𝑋𝑈 → (𝑥 = 𝑋 → ¬ (𝑛 = 1𝑜𝑥𝑈)))
41 iffalse 4072 . . . . . . . . . . . . . . . . 17 (¬ (𝑛 = 1𝑜𝑥𝑈) → if((𝑛 = 1𝑜𝑥𝑈), ∅, if(𝑥 ∈ (V × 𝑈), ⟨ 𝑛, (1st𝑥)⟩, ⟨𝑛, 𝑥⟩)) = if(𝑥 ∈ (V × 𝑈), ⟨ 𝑛, (1st𝑥)⟩, ⟨𝑛, 𝑥⟩))
4240, 41syl6 35 . . . . . . . . . . . . . . . 16 𝑋𝑈 → (𝑥 = 𝑋 → if((𝑛 = 1𝑜𝑥𝑈), ∅, if(𝑥 ∈ (V × 𝑈), ⟨ 𝑛, (1st𝑥)⟩, ⟨𝑛, 𝑥⟩)) = if(𝑥 ∈ (V × 𝑈), ⟨ 𝑛, (1st𝑥)⟩, ⟨𝑛, 𝑥⟩)))
4342imp 445 . . . . . . . . . . . . . . 15 ((¬ 𝑋𝑈𝑥 = 𝑋) → if((𝑛 = 1𝑜𝑥𝑈), ∅, if(𝑥 ∈ (V × 𝑈), ⟨ 𝑛, (1st𝑥)⟩, ⟨𝑛, 𝑥⟩)) = if(𝑥 ∈ (V × 𝑈), ⟨ 𝑛, (1st𝑥)⟩, ⟨𝑛, 𝑥⟩))
44 ifeqor 4109 . . . . . . . . . . . . . . . . 17 (if(𝑥 ∈ (V × 𝑈), ⟨ 𝑛, (1st𝑥)⟩, ⟨𝑛, 𝑥⟩) = ⟨ 𝑛, (1st𝑥)⟩ ∨ if(𝑥 ∈ (V × 𝑈), ⟨ 𝑛, (1st𝑥)⟩, ⟨𝑛, 𝑥⟩) = ⟨𝑛, 𝑥⟩)
45 vuniex 6908 . . . . . . . . . . . . . . . . . . . . 21 𝑛 ∈ V
46 fvex 6160 . . . . . . . . . . . . . . . . . . . . 21 (1st𝑥) ∈ V
4745, 46opnzi 4908 . . . . . . . . . . . . . . . . . . . 20 𝑛, (1st𝑥)⟩ ≠ ∅
4847neii 2798 . . . . . . . . . . . . . . . . . . 19 ¬ ⟨ 𝑛, (1st𝑥)⟩ = ∅
49 eqeq1 2630 . . . . . . . . . . . . . . . . . . 19 (if(𝑥 ∈ (V × 𝑈), ⟨ 𝑛, (1st𝑥)⟩, ⟨𝑛, 𝑥⟩) = ⟨ 𝑛, (1st𝑥)⟩ → (if(𝑥 ∈ (V × 𝑈), ⟨ 𝑛, (1st𝑥)⟩, ⟨𝑛, 𝑥⟩) = ∅ ↔ ⟨ 𝑛, (1st𝑥)⟩ = ∅))
5048, 49mtbiri 317 . . . . . . . . . . . . . . . . . 18 (if(𝑥 ∈ (V × 𝑈), ⟨ 𝑛, (1st𝑥)⟩, ⟨𝑛, 𝑥⟩) = ⟨ 𝑛, (1st𝑥)⟩ → ¬ if(𝑥 ∈ (V × 𝑈), ⟨ 𝑛, (1st𝑥)⟩, ⟨𝑛, 𝑥⟩) = ∅)
51 vex 3194 . . . . . . . . . . . . . . . . . . . . 21 𝑛 ∈ V
52 vex 3194 . . . . . . . . . . . . . . . . . . . . 21 𝑥 ∈ V
5351, 52opnzi 4908 . . . . . . . . . . . . . . . . . . . 20 𝑛, 𝑥⟩ ≠ ∅
5453neii 2798 . . . . . . . . . . . . . . . . . . 19 ¬ ⟨𝑛, 𝑥⟩ = ∅
55 eqeq1 2630 . . . . . . . . . . . . . . . . . . 19 (if(𝑥 ∈ (V × 𝑈), ⟨ 𝑛, (1st𝑥)⟩, ⟨𝑛, 𝑥⟩) = ⟨𝑛, 𝑥⟩ → (if(𝑥 ∈ (V × 𝑈), ⟨ 𝑛, (1st𝑥)⟩, ⟨𝑛, 𝑥⟩) = ∅ ↔ ⟨𝑛, 𝑥⟩ = ∅))
5654, 55mtbiri 317 . . . . . . . . . . . . . . . . . 18 (if(𝑥 ∈ (V × 𝑈), ⟨ 𝑛, (1st𝑥)⟩, ⟨𝑛, 𝑥⟩) = ⟨𝑛, 𝑥⟩ → ¬ if(𝑥 ∈ (V × 𝑈), ⟨ 𝑛, (1st𝑥)⟩, ⟨𝑛, 𝑥⟩) = ∅)
5750, 56jaoi 394 . . . . . . . . . . . . . . . . 17 ((if(𝑥 ∈ (V × 𝑈), ⟨ 𝑛, (1st𝑥)⟩, ⟨𝑛, 𝑥⟩) = ⟨ 𝑛, (1st𝑥)⟩ ∨ if(𝑥 ∈ (V × 𝑈), ⟨ 𝑛, (1st𝑥)⟩, ⟨𝑛, 𝑥⟩) = ⟨𝑛, 𝑥⟩) → ¬ if(𝑥 ∈ (V × 𝑈), ⟨ 𝑛, (1st𝑥)⟩, ⟨𝑛, 𝑥⟩) = ∅)
5844, 57mp1i 13 . . . . . . . . . . . . . . . 16 ((¬ 𝑋𝑈𝑥 = 𝑋) → ¬ if(𝑥 ∈ (V × 𝑈), ⟨ 𝑛, (1st𝑥)⟩, ⟨𝑛, 𝑥⟩) = ∅)
5958neqned 2803 . . . . . . . . . . . . . . 15 ((¬ 𝑋𝑈𝑥 = 𝑋) → if(𝑥 ∈ (V × 𝑈), ⟨ 𝑛, (1st𝑥)⟩, ⟨𝑛, 𝑥⟩) ≠ ∅)
6043, 59eqnetrd 2863 . . . . . . . . . . . . . 14 ((¬ 𝑋𝑈𝑥 = 𝑋) → if((𝑛 = 1𝑜𝑥𝑈), ∅, if(𝑥 ∈ (V × 𝑈), ⟨ 𝑛, (1st𝑥)⟩, ⟨𝑛, 𝑥⟩)) ≠ ∅)
6160adantrl 751 . . . . . . . . . . . . 13 ((¬ 𝑋𝑈 ∧ (𝑛 = 1𝑜𝑥 = 𝑋)) → if((𝑛 = 1𝑜𝑥𝑈), ∅, if(𝑥 ∈ (V × 𝑈), ⟨ 𝑛, (1st𝑥)⟩, ⟨𝑛, 𝑥⟩)) ≠ ∅)
6234, 61eqnetrrd 2864 . . . . . . . . . . . 12 ((¬ 𝑋𝑈 ∧ (𝑛 = 1𝑜𝑥 = 𝑋)) → 1𝑜 / 𝑛𝑋 / 𝑥if((𝑛 = 1𝑜𝑥𝑈), ∅, if(𝑥 ∈ (V × 𝑈), ⟨ 𝑛, (1st𝑥)⟩, ⟨𝑛, 𝑥⟩)) ≠ ∅)
6362adantl 482 . . . . . . . . . . 11 ((𝑋 ∈ V ∧ (¬ 𝑋𝑈 ∧ (𝑛 = 1𝑜𝑥 = 𝑋))) → 1𝑜 / 𝑛𝑋 / 𝑥if((𝑛 = 1𝑜𝑥𝑈), ∅, if(𝑥 ∈ (V × 𝑈), ⟨ 𝑛, (1st𝑥)⟩, ⟨𝑛, 𝑥⟩)) ≠ ∅)
6430, 63eqnetrd 2863 . . . . . . . . . 10 ((𝑋 ∈ V ∧ (¬ 𝑋𝑈 ∧ (𝑛 = 1𝑜𝑥 = 𝑋))) → (1𝑜(𝑛 ∈ ω, 𝑥 ∈ V ↦ if((𝑛 = 1𝑜𝑥𝑈), ∅, if(𝑥 ∈ (V × 𝑈), ⟨ 𝑛, (1st𝑥)⟩, ⟨𝑛, 𝑥⟩)))𝑋) ≠ ∅)
6519, 64syl5eqner 2871 . . . . . . . . 9 ((𝑋 ∈ V ∧ (¬ 𝑋𝑈 ∧ (𝑛 = 1𝑜𝑥 = 𝑋))) → ((𝑛 ∈ ω, 𝑥 ∈ V ↦ if((𝑛 = 1𝑜𝑥𝑈), ∅, if(𝑥 ∈ (V × 𝑈), ⟨ 𝑛, (1st𝑥)⟩, ⟨𝑛, 𝑥⟩)))‘⟨1𝑜, 𝑋⟩) ≠ ∅)
6665ancom2s 843 . . . . . . . 8 ((𝑋 ∈ V ∧ ((𝑛 = 1𝑜𝑥 = 𝑋) ∧ ¬ 𝑋𝑈)) → ((𝑛 ∈ ω, 𝑥 ∈ V ↦ if((𝑛 = 1𝑜𝑥𝑈), ∅, if(𝑥 ∈ (V × 𝑈), ⟨ 𝑛, (1st𝑥)⟩, ⟨𝑛, 𝑥⟩)))‘⟨1𝑜, 𝑋⟩) ≠ ∅)
6766an12s 842 . . . . . . 7 (((𝑛 = 1𝑜𝑥 = 𝑋) ∧ (𝑋 ∈ V ∧ ¬ 𝑋𝑈)) → ((𝑛 ∈ ω, 𝑥 ∈ V ↦ if((𝑛 = 1𝑜𝑥𝑈), ∅, if(𝑥 ∈ (V × 𝑈), ⟨ 𝑛, (1st𝑥)⟩, ⟨𝑛, 𝑥⟩)))‘⟨1𝑜, 𝑋⟩) ≠ ∅)
6867exp31 629 . . . . . 6 (𝑛 = 1𝑜 → (𝑥 = 𝑋 → ((𝑋 ∈ V ∧ ¬ 𝑋𝑈) → ((𝑛 ∈ ω, 𝑥 ∈ V ↦ if((𝑛 = 1𝑜𝑥𝑈), ∅, if(𝑥 ∈ (V × 𝑈), ⟨ 𝑛, (1st𝑥)⟩, ⟨𝑛, 𝑥⟩)))‘⟨1𝑜, 𝑋⟩) ≠ ∅)))
6916, 18, 68vtoclef 3272 . . . . 5 (𝑥 = 𝑋 → ((𝑋 ∈ V ∧ ¬ 𝑋𝑈) → ((𝑛 ∈ ω, 𝑥 ∈ V ↦ if((𝑛 = 1𝑜𝑥𝑈), ∅, if(𝑥 ∈ (V × 𝑈), ⟨ 𝑛, (1st𝑥)⟩, ⟨𝑛, 𝑥⟩)))‘⟨1𝑜, 𝑋⟩) ≠ ∅))
707, 69vtoclefex 32805 . . . 4 (𝑋 ∈ V → ((𝑋 ∈ V ∧ ¬ 𝑋𝑈) → ((𝑛 ∈ ω, 𝑥 ∈ V ↦ if((𝑛 = 1𝑜𝑥𝑈), ∅, if(𝑥 ∈ (V × 𝑈), ⟨ 𝑛, (1st𝑥)⟩, ⟨𝑛, 𝑥⟩)))‘⟨1𝑜, 𝑋⟩) ≠ ∅))
7170anabsi5 857 . . 3 ((𝑋 ∈ V ∧ ¬ 𝑋𝑈) → ((𝑛 ∈ ω, 𝑥 ∈ V ↦ if((𝑛 = 1𝑜𝑥𝑈), ∅, if(𝑥 ∈ (V × 𝑈), ⟨ 𝑛, (1st𝑥)⟩, ⟨𝑛, 𝑥⟩)))‘⟨1𝑜, 𝑋⟩) ≠ ∅)
7271necomd 2851 . 2 ((𝑋 ∈ V ∧ ¬ 𝑋𝑈) → ∅ ≠ ((𝑛 ∈ ω, 𝑥 ∈ V ↦ if((𝑛 = 1𝑜𝑥𝑈), ∅, if(𝑥 ∈ (V × 𝑈), ⟨ 𝑛, (1st𝑥)⟩, ⟨𝑛, 𝑥⟩)))‘⟨1𝑜, 𝑋⟩))
7372neneqd 2801 1 ((𝑋 ∈ V ∧ ¬ 𝑋𝑈) → ¬ ∅ = ((𝑛 ∈ ω, 𝑥 ∈ V ↦ if((𝑛 = 1𝑜𝑥𝑈), ∅, if(𝑥 ∈ (V × 𝑈), ⟨ 𝑛, (1st𝑥)⟩, ⟨𝑛, 𝑥⟩)))‘⟨1𝑜, 𝑋⟩))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wo 383  wa 384   = wceq 1480  wcel 1992  wne 2796  Vcvv 3191  csb 3519  c0 3896  ifcif 4063  cop 4159   cuni 4407   × cxp 5077  cfv 5850  (class class class)co 6605  cmpt2 6607  ωcom 7013  1st c1st 7114  1𝑜c1o 7499
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1841  ax-6 1890  ax-7 1937  ax-8 1994  ax-9 2001  ax-10 2021  ax-11 2036  ax-12 2049  ax-13 2250  ax-ext 2606  ax-sep 4746  ax-nul 4754  ax-pr 4872  ax-un 6903
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-fal 1486  df-ex 1702  df-nf 1707  df-sb 1883  df-eu 2478  df-mo 2479  df-clab 2613  df-cleq 2619  df-clel 2622  df-nfc 2756  df-ne 2797  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3193  df-sbc 3423  df-csb 3520  df-dif 3563  df-un 3565  df-in 3567  df-ss 3574  df-pss 3576  df-nul 3897  df-if 4064  df-pw 4137  df-sn 4154  df-pr 4156  df-tp 4158  df-op 4160  df-uni 4408  df-br 4619  df-opab 4679  df-tr 4718  df-eprel 4990  df-id 4994  df-po 5000  df-so 5001  df-fr 5038  df-we 5040  df-xp 5085  df-rel 5086  df-cnv 5087  df-co 5088  df-dm 5089  df-ord 5688  df-on 5689  df-lim 5690  df-suc 5691  df-iota 5813  df-fun 5852  df-fv 5858  df-ov 6608  df-oprab 6609  df-mpt2 6610  df-om 7014  df-1o 7506
This theorem is referenced by:  finxp1o  32853
  Copyright terms: Public domain W3C validator