MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fnresdisj Structured version   Visualization version   GIF version

Theorem fnresdisj 6467
Description: A function restricted to a class disjoint with its domain is empty. (Contributed by NM, 23-Sep-2004.)
Assertion
Ref Expression
fnresdisj (𝐹 Fn 𝐴 → ((𝐴𝐵) = ∅ ↔ (𝐹𝐵) = ∅))

Proof of Theorem fnresdisj
StepHypRef Expression
1 relres 5882 . . 3 Rel (𝐹𝐵)
2 reldm0 5798 . . 3 (Rel (𝐹𝐵) → ((𝐹𝐵) = ∅ ↔ dom (𝐹𝐵) = ∅))
31, 2ax-mp 5 . 2 ((𝐹𝐵) = ∅ ↔ dom (𝐹𝐵) = ∅)
4 dmres 5875 . . . . 5 dom (𝐹𝐵) = (𝐵 ∩ dom 𝐹)
5 incom 4178 . . . . 5 (𝐵 ∩ dom 𝐹) = (dom 𝐹𝐵)
64, 5eqtri 2844 . . . 4 dom (𝐹𝐵) = (dom 𝐹𝐵)
7 fndm 6455 . . . . 5 (𝐹 Fn 𝐴 → dom 𝐹 = 𝐴)
87ineq1d 4188 . . . 4 (𝐹 Fn 𝐴 → (dom 𝐹𝐵) = (𝐴𝐵))
96, 8syl5eq 2868 . . 3 (𝐹 Fn 𝐴 → dom (𝐹𝐵) = (𝐴𝐵))
109eqeq1d 2823 . 2 (𝐹 Fn 𝐴 → (dom (𝐹𝐵) = ∅ ↔ (𝐴𝐵) = ∅))
113, 10syl5rbb 286 1 (𝐹 Fn 𝐴 → ((𝐴𝐵) = ∅ ↔ (𝐹𝐵) = ∅))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208   = wceq 1537  cin 3935  c0 4291  dom cdm 5555  cres 5557  Rel wrel 5560   Fn wfn 6350
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2793  ax-sep 5203  ax-nul 5210  ax-pr 5330
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ral 3143  df-rex 3144  df-rab 3147  df-v 3496  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-nul 4292  df-if 4468  df-sn 4568  df-pr 4570  df-op 4574  df-br 5067  df-opab 5129  df-xp 5561  df-rel 5562  df-dm 5565  df-res 5567  df-fn 6358
This theorem is referenced by:  funressn  6921  fvsnun2  6945  axdc3lem4  9875  fseq1p1m1  12982  hashgval  13694  hashinf  13696  pwssplit1  19831  mplmonmul  20245  wwlksm1edg  27659  eulerpartlemt  31629  poimirlem3  34910  pwssplit4  39709
  Copyright terms: Public domain W3C validator