![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > fnresdisj | Structured version Visualization version GIF version |
Description: A function restricted to a class disjoint with its domain is empty. (Contributed by NM, 23-Sep-2004.) |
Ref | Expression |
---|---|
fnresdisj | ⊢ (𝐹 Fn 𝐴 → ((𝐴 ∩ 𝐵) = ∅ ↔ (𝐹 ↾ 𝐵) = ∅)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | relres 5584 | . . 3 ⊢ Rel (𝐹 ↾ 𝐵) | |
2 | reldm0 5498 | . . 3 ⊢ (Rel (𝐹 ↾ 𝐵) → ((𝐹 ↾ 𝐵) = ∅ ↔ dom (𝐹 ↾ 𝐵) = ∅)) | |
3 | 1, 2 | ax-mp 5 | . 2 ⊢ ((𝐹 ↾ 𝐵) = ∅ ↔ dom (𝐹 ↾ 𝐵) = ∅) |
4 | dmres 5577 | . . . . 5 ⊢ dom (𝐹 ↾ 𝐵) = (𝐵 ∩ dom 𝐹) | |
5 | incom 3948 | . . . . 5 ⊢ (𝐵 ∩ dom 𝐹) = (dom 𝐹 ∩ 𝐵) | |
6 | 4, 5 | eqtri 2782 | . . . 4 ⊢ dom (𝐹 ↾ 𝐵) = (dom 𝐹 ∩ 𝐵) |
7 | fndm 6151 | . . . . 5 ⊢ (𝐹 Fn 𝐴 → dom 𝐹 = 𝐴) | |
8 | 7 | ineq1d 3956 | . . . 4 ⊢ (𝐹 Fn 𝐴 → (dom 𝐹 ∩ 𝐵) = (𝐴 ∩ 𝐵)) |
9 | 6, 8 | syl5eq 2806 | . . 3 ⊢ (𝐹 Fn 𝐴 → dom (𝐹 ↾ 𝐵) = (𝐴 ∩ 𝐵)) |
10 | 9 | eqeq1d 2762 | . 2 ⊢ (𝐹 Fn 𝐴 → (dom (𝐹 ↾ 𝐵) = ∅ ↔ (𝐴 ∩ 𝐵) = ∅)) |
11 | 3, 10 | syl5rbb 273 | 1 ⊢ (𝐹 Fn 𝐴 → ((𝐴 ∩ 𝐵) = ∅ ↔ (𝐹 ↾ 𝐵) = ∅)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 196 = wceq 1632 ∩ cin 3714 ∅c0 4058 dom cdm 5266 ↾ cres 5268 Rel wrel 5271 Fn wfn 6044 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1871 ax-4 1886 ax-5 1988 ax-6 2054 ax-7 2090 ax-9 2148 ax-10 2168 ax-11 2183 ax-12 2196 ax-13 2391 ax-ext 2740 ax-sep 4933 ax-nul 4941 ax-pr 5055 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3an 1074 df-tru 1635 df-ex 1854 df-nf 1859 df-sb 2047 df-clab 2747 df-cleq 2753 df-clel 2756 df-nfc 2891 df-ral 3055 df-rex 3056 df-rab 3059 df-v 3342 df-dif 3718 df-un 3720 df-in 3722 df-ss 3729 df-nul 4059 df-if 4231 df-sn 4322 df-pr 4324 df-op 4328 df-br 4805 df-opab 4865 df-xp 5272 df-rel 5273 df-dm 5276 df-res 5278 df-fn 6052 |
This theorem is referenced by: funressn 6590 fvsnun2 6614 axdc3lem4 9487 fseq1p1m1 12627 hashgval 13334 hashinf 13336 pwssplit1 19281 mplmonmul 19686 wwlksm1edg 27011 eulerpartlemt 30763 poimirlem3 33743 pwssplit4 38179 |
Copyright terms: Public domain | W3C validator |