MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  genpass Structured version   Visualization version   GIF version

Theorem genpass 10431
Description: Associativity of an operation on reals. (Contributed by NM, 18-Mar-1996.) (Revised by Mario Carneiro, 12-Jun-2013.) (New usage is discouraged.)
Hypotheses
Ref Expression
genp.1 𝐹 = (𝑤P, 𝑣P ↦ {𝑥 ∣ ∃𝑦𝑤𝑧𝑣 𝑥 = (𝑦𝐺𝑧)})
genp.2 ((𝑦Q𝑧Q) → (𝑦𝐺𝑧) ∈ Q)
genpass.4 dom 𝐹 = (P × P)
genpass.5 ((𝑓P𝑔P) → (𝑓𝐹𝑔) ∈ P)
genpass.6 ((𝑓𝐺𝑔)𝐺) = (𝑓𝐺(𝑔𝐺))
Assertion
Ref Expression
genpass ((𝐴𝐹𝐵)𝐹𝐶) = (𝐴𝐹(𝐵𝐹𝐶))
Distinct variable groups:   𝑥,𝑦,𝑧,𝑓,𝑔,,𝐴   𝑥,𝐵,𝑦,𝑧,𝑓,𝑔,   𝑥,𝑤,𝑣,𝐺,𝑦,𝑧,𝑓,𝑔,   𝑓,𝐹,𝑔   𝐶,𝑓,𝑔,,𝑥,𝑦,𝑧   𝑥,𝐹,𝑦,𝑧,
Allowed substitution hints:   𝐴(𝑤,𝑣)   𝐵(𝑤,𝑣)   𝐶(𝑤,𝑣)   𝐹(𝑤,𝑣)

Proof of Theorem genpass
Dummy variable 𝑡 is distinct from all other variables.
StepHypRef Expression
1 genp.1 . . . . . . . . . 10 𝐹 = (𝑤P, 𝑣P ↦ {𝑥 ∣ ∃𝑦𝑤𝑧𝑣 𝑥 = (𝑦𝐺𝑧)})
2 genp.2 . . . . . . . . . 10 ((𝑦Q𝑧Q) → (𝑦𝐺𝑧) ∈ Q)
31, 2genpelv 10422 . . . . . . . . 9 ((𝐵P𝐶P) → (𝑡 ∈ (𝐵𝐹𝐶) ↔ ∃𝑔𝐵𝐶 𝑡 = (𝑔𝐺)))
433adant1 1126 . . . . . . . 8 ((𝐴P𝐵P𝐶P) → (𝑡 ∈ (𝐵𝐹𝐶) ↔ ∃𝑔𝐵𝐶 𝑡 = (𝑔𝐺)))
54anbi1d 631 . . . . . . 7 ((𝐴P𝐵P𝐶P) → ((𝑡 ∈ (𝐵𝐹𝐶) ∧ 𝑥 = (𝑓𝐺𝑡)) ↔ (∃𝑔𝐵𝐶 𝑡 = (𝑔𝐺) ∧ 𝑥 = (𝑓𝐺𝑡))))
65exbidv 1922 . . . . . 6 ((𝐴P𝐵P𝐶P) → (∃𝑡(𝑡 ∈ (𝐵𝐹𝐶) ∧ 𝑥 = (𝑓𝐺𝑡)) ↔ ∃𝑡(∃𝑔𝐵𝐶 𝑡 = (𝑔𝐺) ∧ 𝑥 = (𝑓𝐺𝑡))))
7 df-rex 3144 . . . . . 6 (∃𝑡 ∈ (𝐵𝐹𝐶)𝑥 = (𝑓𝐺𝑡) ↔ ∃𝑡(𝑡 ∈ (𝐵𝐹𝐶) ∧ 𝑥 = (𝑓𝐺𝑡)))
8 ovex 7189 . . . . . . . . . . . . 13 (𝑔𝐺) ∈ V
98isseti 3508 . . . . . . . . . . . 12 𝑡 𝑡 = (𝑔𝐺)
109biantrur 533 . . . . . . . . . . 11 (𝑥 = ((𝑓𝐺𝑔)𝐺) ↔ (∃𝑡 𝑡 = (𝑔𝐺) ∧ 𝑥 = ((𝑓𝐺𝑔)𝐺)))
11 19.41v 1950 . . . . . . . . . . 11 (∃𝑡(𝑡 = (𝑔𝐺) ∧ 𝑥 = ((𝑓𝐺𝑔)𝐺)) ↔ (∃𝑡 𝑡 = (𝑔𝐺) ∧ 𝑥 = ((𝑓𝐺𝑔)𝐺)))
1210, 11bitr4i 280 . . . . . . . . . 10 (𝑥 = ((𝑓𝐺𝑔)𝐺) ↔ ∃𝑡(𝑡 = (𝑔𝐺) ∧ 𝑥 = ((𝑓𝐺𝑔)𝐺)))
1312rexbii 3247 . . . . . . . . 9 (∃𝐶 𝑥 = ((𝑓𝐺𝑔)𝐺) ↔ ∃𝐶𝑡(𝑡 = (𝑔𝐺) ∧ 𝑥 = ((𝑓𝐺𝑔)𝐺)))
14 rexcom4 3249 . . . . . . . . 9 (∃𝐶𝑡(𝑡 = (𝑔𝐺) ∧ 𝑥 = ((𝑓𝐺𝑔)𝐺)) ↔ ∃𝑡𝐶 (𝑡 = (𝑔𝐺) ∧ 𝑥 = ((𝑓𝐺𝑔)𝐺)))
1513, 14bitri 277 . . . . . . . 8 (∃𝐶 𝑥 = ((𝑓𝐺𝑔)𝐺) ↔ ∃𝑡𝐶 (𝑡 = (𝑔𝐺) ∧ 𝑥 = ((𝑓𝐺𝑔)𝐺)))
1615rexbii 3247 . . . . . . 7 (∃𝑔𝐵𝐶 𝑥 = ((𝑓𝐺𝑔)𝐺) ↔ ∃𝑔𝐵𝑡𝐶 (𝑡 = (𝑔𝐺) ∧ 𝑥 = ((𝑓𝐺𝑔)𝐺)))
17 rexcom4 3249 . . . . . . 7 (∃𝑔𝐵𝑡𝐶 (𝑡 = (𝑔𝐺) ∧ 𝑥 = ((𝑓𝐺𝑔)𝐺)) ↔ ∃𝑡𝑔𝐵𝐶 (𝑡 = (𝑔𝐺) ∧ 𝑥 = ((𝑓𝐺𝑔)𝐺)))
18 oveq2 7164 . . . . . . . . . . . . . . 15 (𝑡 = (𝑔𝐺) → (𝑓𝐺𝑡) = (𝑓𝐺(𝑔𝐺)))
19 genpass.6 . . . . . . . . . . . . . . 15 ((𝑓𝐺𝑔)𝐺) = (𝑓𝐺(𝑔𝐺))
2018, 19syl6eqr 2874 . . . . . . . . . . . . . 14 (𝑡 = (𝑔𝐺) → (𝑓𝐺𝑡) = ((𝑓𝐺𝑔)𝐺))
2120eqeq2d 2832 . . . . . . . . . . . . 13 (𝑡 = (𝑔𝐺) → (𝑥 = (𝑓𝐺𝑡) ↔ 𝑥 = ((𝑓𝐺𝑔)𝐺)))
2221pm5.32i 577 . . . . . . . . . . . 12 ((𝑡 = (𝑔𝐺) ∧ 𝑥 = (𝑓𝐺𝑡)) ↔ (𝑡 = (𝑔𝐺) ∧ 𝑥 = ((𝑓𝐺𝑔)𝐺)))
2322rexbii 3247 . . . . . . . . . . 11 (∃𝐶 (𝑡 = (𝑔𝐺) ∧ 𝑥 = (𝑓𝐺𝑡)) ↔ ∃𝐶 (𝑡 = (𝑔𝐺) ∧ 𝑥 = ((𝑓𝐺𝑔)𝐺)))
24 r19.41v 3347 . . . . . . . . . . 11 (∃𝐶 (𝑡 = (𝑔𝐺) ∧ 𝑥 = (𝑓𝐺𝑡)) ↔ (∃𝐶 𝑡 = (𝑔𝐺) ∧ 𝑥 = (𝑓𝐺𝑡)))
2523, 24bitr3i 279 . . . . . . . . . 10 (∃𝐶 (𝑡 = (𝑔𝐺) ∧ 𝑥 = ((𝑓𝐺𝑔)𝐺)) ↔ (∃𝐶 𝑡 = (𝑔𝐺) ∧ 𝑥 = (𝑓𝐺𝑡)))
2625rexbii 3247 . . . . . . . . 9 (∃𝑔𝐵𝐶 (𝑡 = (𝑔𝐺) ∧ 𝑥 = ((𝑓𝐺𝑔)𝐺)) ↔ ∃𝑔𝐵 (∃𝐶 𝑡 = (𝑔𝐺) ∧ 𝑥 = (𝑓𝐺𝑡)))
27 r19.41v 3347 . . . . . . . . 9 (∃𝑔𝐵 (∃𝐶 𝑡 = (𝑔𝐺) ∧ 𝑥 = (𝑓𝐺𝑡)) ↔ (∃𝑔𝐵𝐶 𝑡 = (𝑔𝐺) ∧ 𝑥 = (𝑓𝐺𝑡)))
2826, 27bitri 277 . . . . . . . 8 (∃𝑔𝐵𝐶 (𝑡 = (𝑔𝐺) ∧ 𝑥 = ((𝑓𝐺𝑔)𝐺)) ↔ (∃𝑔𝐵𝐶 𝑡 = (𝑔𝐺) ∧ 𝑥 = (𝑓𝐺𝑡)))
2928exbii 1848 . . . . . . 7 (∃𝑡𝑔𝐵𝐶 (𝑡 = (𝑔𝐺) ∧ 𝑥 = ((𝑓𝐺𝑔)𝐺)) ↔ ∃𝑡(∃𝑔𝐵𝐶 𝑡 = (𝑔𝐺) ∧ 𝑥 = (𝑓𝐺𝑡)))
3016, 17, 293bitri 299 . . . . . 6 (∃𝑔𝐵𝐶 𝑥 = ((𝑓𝐺𝑔)𝐺) ↔ ∃𝑡(∃𝑔𝐵𝐶 𝑡 = (𝑔𝐺) ∧ 𝑥 = (𝑓𝐺𝑡)))
316, 7, 303bitr4g 316 . . . . 5 ((𝐴P𝐵P𝐶P) → (∃𝑡 ∈ (𝐵𝐹𝐶)𝑥 = (𝑓𝐺𝑡) ↔ ∃𝑔𝐵𝐶 𝑥 = ((𝑓𝐺𝑔)𝐺)))
3231rexbidv 3297 . . . 4 ((𝐴P𝐵P𝐶P) → (∃𝑓𝐴𝑡 ∈ (𝐵𝐹𝐶)𝑥 = (𝑓𝐺𝑡) ↔ ∃𝑓𝐴𝑔𝐵𝐶 𝑥 = ((𝑓𝐺𝑔)𝐺)))
33 genpass.5 . . . . . . 7 ((𝑓P𝑔P) → (𝑓𝐹𝑔) ∈ P)
3433caovcl 7342 . . . . . 6 ((𝐵P𝐶P) → (𝐵𝐹𝐶) ∈ P)
351, 2genpelv 10422 . . . . . 6 ((𝐴P ∧ (𝐵𝐹𝐶) ∈ P) → (𝑥 ∈ (𝐴𝐹(𝐵𝐹𝐶)) ↔ ∃𝑓𝐴𝑡 ∈ (𝐵𝐹𝐶)𝑥 = (𝑓𝐺𝑡)))
3634, 35sylan2 594 . . . . 5 ((𝐴P ∧ (𝐵P𝐶P)) → (𝑥 ∈ (𝐴𝐹(𝐵𝐹𝐶)) ↔ ∃𝑓𝐴𝑡 ∈ (𝐵𝐹𝐶)𝑥 = (𝑓𝐺𝑡)))
37363impb 1111 . . . 4 ((𝐴P𝐵P𝐶P) → (𝑥 ∈ (𝐴𝐹(𝐵𝐹𝐶)) ↔ ∃𝑓𝐴𝑡 ∈ (𝐵𝐹𝐶)𝑥 = (𝑓𝐺𝑡)))
3833caovcl 7342 . . . . . 6 ((𝐴P𝐵P) → (𝐴𝐹𝐵) ∈ P)
391, 2genpelv 10422 . . . . . 6 (((𝐴𝐹𝐵) ∈ P𝐶P) → (𝑥 ∈ ((𝐴𝐹𝐵)𝐹𝐶) ↔ ∃𝑡 ∈ (𝐴𝐹𝐵)∃𝐶 𝑥 = (𝑡𝐺)))
4038, 39stoic3 1777 . . . . 5 ((𝐴P𝐵P𝐶P) → (𝑥 ∈ ((𝐴𝐹𝐵)𝐹𝐶) ↔ ∃𝑡 ∈ (𝐴𝐹𝐵)∃𝐶 𝑥 = (𝑡𝐺)))
411, 2genpelv 10422 . . . . . . . . 9 ((𝐴P𝐵P) → (𝑡 ∈ (𝐴𝐹𝐵) ↔ ∃𝑓𝐴𝑔𝐵 𝑡 = (𝑓𝐺𝑔)))
42413adant3 1128 . . . . . . . 8 ((𝐴P𝐵P𝐶P) → (𝑡 ∈ (𝐴𝐹𝐵) ↔ ∃𝑓𝐴𝑔𝐵 𝑡 = (𝑓𝐺𝑔)))
4342anbi1d 631 . . . . . . 7 ((𝐴P𝐵P𝐶P) → ((𝑡 ∈ (𝐴𝐹𝐵) ∧ ∃𝐶 𝑥 = (𝑡𝐺)) ↔ (∃𝑓𝐴𝑔𝐵 𝑡 = (𝑓𝐺𝑔) ∧ ∃𝐶 𝑥 = (𝑡𝐺))))
4443exbidv 1922 . . . . . 6 ((𝐴P𝐵P𝐶P) → (∃𝑡(𝑡 ∈ (𝐴𝐹𝐵) ∧ ∃𝐶 𝑥 = (𝑡𝐺)) ↔ ∃𝑡(∃𝑓𝐴𝑔𝐵 𝑡 = (𝑓𝐺𝑔) ∧ ∃𝐶 𝑥 = (𝑡𝐺))))
45 df-rex 3144 . . . . . 6 (∃𝑡 ∈ (𝐴𝐹𝐵)∃𝐶 𝑥 = (𝑡𝐺) ↔ ∃𝑡(𝑡 ∈ (𝐴𝐹𝐵) ∧ ∃𝐶 𝑥 = (𝑡𝐺)))
46 19.41v 1950 . . . . . . . . . . 11 (∃𝑡(𝑡 = (𝑓𝐺𝑔) ∧ ∃𝐶 𝑥 = ((𝑓𝐺𝑔)𝐺)) ↔ (∃𝑡 𝑡 = (𝑓𝐺𝑔) ∧ ∃𝐶 𝑥 = ((𝑓𝐺𝑔)𝐺)))
47 oveq1 7163 . . . . . . . . . . . . . . 15 (𝑡 = (𝑓𝐺𝑔) → (𝑡𝐺) = ((𝑓𝐺𝑔)𝐺))
4847eqeq2d 2832 . . . . . . . . . . . . . 14 (𝑡 = (𝑓𝐺𝑔) → (𝑥 = (𝑡𝐺) ↔ 𝑥 = ((𝑓𝐺𝑔)𝐺)))
4948rexbidv 3297 . . . . . . . . . . . . 13 (𝑡 = (𝑓𝐺𝑔) → (∃𝐶 𝑥 = (𝑡𝐺) ↔ ∃𝐶 𝑥 = ((𝑓𝐺𝑔)𝐺)))
5049pm5.32i 577 . . . . . . . . . . . 12 ((𝑡 = (𝑓𝐺𝑔) ∧ ∃𝐶 𝑥 = (𝑡𝐺)) ↔ (𝑡 = (𝑓𝐺𝑔) ∧ ∃𝐶 𝑥 = ((𝑓𝐺𝑔)𝐺)))
5150exbii 1848 . . . . . . . . . . 11 (∃𝑡(𝑡 = (𝑓𝐺𝑔) ∧ ∃𝐶 𝑥 = (𝑡𝐺)) ↔ ∃𝑡(𝑡 = (𝑓𝐺𝑔) ∧ ∃𝐶 𝑥 = ((𝑓𝐺𝑔)𝐺)))
52 ovex 7189 . . . . . . . . . . . . 13 (𝑓𝐺𝑔) ∈ V
5352isseti 3508 . . . . . . . . . . . 12 𝑡 𝑡 = (𝑓𝐺𝑔)
5453biantrur 533 . . . . . . . . . . 11 (∃𝐶 𝑥 = ((𝑓𝐺𝑔)𝐺) ↔ (∃𝑡 𝑡 = (𝑓𝐺𝑔) ∧ ∃𝐶 𝑥 = ((𝑓𝐺𝑔)𝐺)))
5546, 51, 543bitr4ri 306 . . . . . . . . . 10 (∃𝐶 𝑥 = ((𝑓𝐺𝑔)𝐺) ↔ ∃𝑡(𝑡 = (𝑓𝐺𝑔) ∧ ∃𝐶 𝑥 = (𝑡𝐺)))
5655rexbii 3247 . . . . . . . . 9 (∃𝑔𝐵𝐶 𝑥 = ((𝑓𝐺𝑔)𝐺) ↔ ∃𝑔𝐵𝑡(𝑡 = (𝑓𝐺𝑔) ∧ ∃𝐶 𝑥 = (𝑡𝐺)))
57 rexcom4 3249 . . . . . . . . 9 (∃𝑔𝐵𝑡(𝑡 = (𝑓𝐺𝑔) ∧ ∃𝐶 𝑥 = (𝑡𝐺)) ↔ ∃𝑡𝑔𝐵 (𝑡 = (𝑓𝐺𝑔) ∧ ∃𝐶 𝑥 = (𝑡𝐺)))
5856, 57bitri 277 . . . . . . . 8 (∃𝑔𝐵𝐶 𝑥 = ((𝑓𝐺𝑔)𝐺) ↔ ∃𝑡𝑔𝐵 (𝑡 = (𝑓𝐺𝑔) ∧ ∃𝐶 𝑥 = (𝑡𝐺)))
5958rexbii 3247 . . . . . . 7 (∃𝑓𝐴𝑔𝐵𝐶 𝑥 = ((𝑓𝐺𝑔)𝐺) ↔ ∃𝑓𝐴𝑡𝑔𝐵 (𝑡 = (𝑓𝐺𝑔) ∧ ∃𝐶 𝑥 = (𝑡𝐺)))
60 rexcom4 3249 . . . . . . 7 (∃𝑓𝐴𝑡𝑔𝐵 (𝑡 = (𝑓𝐺𝑔) ∧ ∃𝐶 𝑥 = (𝑡𝐺)) ↔ ∃𝑡𝑓𝐴𝑔𝐵 (𝑡 = (𝑓𝐺𝑔) ∧ ∃𝐶 𝑥 = (𝑡𝐺)))
61 r19.41vv 3349 . . . . . . . 8 (∃𝑓𝐴𝑔𝐵 (𝑡 = (𝑓𝐺𝑔) ∧ ∃𝐶 𝑥 = (𝑡𝐺)) ↔ (∃𝑓𝐴𝑔𝐵 𝑡 = (𝑓𝐺𝑔) ∧ ∃𝐶 𝑥 = (𝑡𝐺)))
6261exbii 1848 . . . . . . 7 (∃𝑡𝑓𝐴𝑔𝐵 (𝑡 = (𝑓𝐺𝑔) ∧ ∃𝐶 𝑥 = (𝑡𝐺)) ↔ ∃𝑡(∃𝑓𝐴𝑔𝐵 𝑡 = (𝑓𝐺𝑔) ∧ ∃𝐶 𝑥 = (𝑡𝐺)))
6359, 60, 623bitri 299 . . . . . 6 (∃𝑓𝐴𝑔𝐵𝐶 𝑥 = ((𝑓𝐺𝑔)𝐺) ↔ ∃𝑡(∃𝑓𝐴𝑔𝐵 𝑡 = (𝑓𝐺𝑔) ∧ ∃𝐶 𝑥 = (𝑡𝐺)))
6444, 45, 633bitr4g 316 . . . . 5 ((𝐴P𝐵P𝐶P) → (∃𝑡 ∈ (𝐴𝐹𝐵)∃𝐶 𝑥 = (𝑡𝐺) ↔ ∃𝑓𝐴𝑔𝐵𝐶 𝑥 = ((𝑓𝐺𝑔)𝐺)))
6540, 64bitrd 281 . . . 4 ((𝐴P𝐵P𝐶P) → (𝑥 ∈ ((𝐴𝐹𝐵)𝐹𝐶) ↔ ∃𝑓𝐴𝑔𝐵𝐶 𝑥 = ((𝑓𝐺𝑔)𝐺)))
6632, 37, 653bitr4rd 314 . . 3 ((𝐴P𝐵P𝐶P) → (𝑥 ∈ ((𝐴𝐹𝐵)𝐹𝐶) ↔ 𝑥 ∈ (𝐴𝐹(𝐵𝐹𝐶))))
6766eqrdv 2819 . 2 ((𝐴P𝐵P𝐶P) → ((𝐴𝐹𝐵)𝐹𝐶) = (𝐴𝐹(𝐵𝐹𝐶)))
68 genpass.4 . . 3 dom 𝐹 = (P × P)
69 0npr 10414 . . 3 ¬ ∅ ∈ P
7068, 69ndmovass 7336 . 2 (¬ (𝐴P𝐵P𝐶P) → ((𝐴𝐹𝐵)𝐹𝐶) = (𝐴𝐹(𝐵𝐹𝐶)))
7167, 70pm2.61i 184 1 ((𝐴𝐹𝐵)𝐹𝐶) = (𝐴𝐹(𝐵𝐹𝐶))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398  w3a 1083   = wceq 1537  wex 1780  wcel 2114  {cab 2799  wrex 3139   × cxp 5553  dom cdm 5555  (class class class)co 7156  cmpo 7158  Qcnq 10274  Pcnp 10281
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2793  ax-sep 5203  ax-nul 5210  ax-pow 5266  ax-pr 5330  ax-un 7461  ax-inf2 9104
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-ral 3143  df-rex 3144  df-rab 3147  df-v 3496  df-sbc 3773  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-pss 3954  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4568  df-pr 4570  df-tp 4572  df-op 4574  df-uni 4839  df-br 5067  df-opab 5129  df-tr 5173  df-id 5460  df-eprel 5465  df-po 5474  df-so 5475  df-fr 5514  df-we 5516  df-xp 5561  df-rel 5562  df-cnv 5563  df-co 5564  df-dm 5565  df-ord 6194  df-on 6195  df-lim 6196  df-suc 6197  df-iota 6314  df-fun 6357  df-fv 6363  df-ov 7159  df-oprab 7160  df-mpo 7161  df-om 7581  df-ni 10294  df-nq 10334  df-np 10403
This theorem is referenced by:  addasspr  10444  mulasspr  10446
  Copyright terms: Public domain W3C validator