Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  genpdm Structured version   Visualization version   GIF version

Theorem genpdm 9862
 Description: Domain of general operation on positive reals. (Contributed by NM, 18-Nov-1995.) (Revised by Mario Carneiro, 17-Nov-2014.) (New usage is discouraged.)
Hypotheses
Ref Expression
genp.1 𝐹 = (𝑤P, 𝑣P ↦ {𝑥 ∣ ∃𝑦𝑤𝑧𝑣 𝑥 = (𝑦𝐺𝑧)})
genp.2 ((𝑦Q𝑧Q) → (𝑦𝐺𝑧) ∈ Q)
Assertion
Ref Expression
genpdm dom 𝐹 = (P × P)
Distinct variable group:   𝑥,𝑦,𝑧,𝑤,𝑣,𝐺
Allowed substitution hints:   𝐹(𝑥,𝑦,𝑧,𝑤,𝑣)

Proof of Theorem genpdm
StepHypRef Expression
1 elprnq 9851 . . . . . . . 8 ((𝑤P𝑦𝑤) → 𝑦Q)
2 elprnq 9851 . . . . . . . 8 ((𝑣P𝑧𝑣) → 𝑧Q)
3 genp.2 . . . . . . . . 9 ((𝑦Q𝑧Q) → (𝑦𝐺𝑧) ∈ Q)
4 eleq1 2718 . . . . . . . . 9 (𝑥 = (𝑦𝐺𝑧) → (𝑥Q ↔ (𝑦𝐺𝑧) ∈ Q))
53, 4syl5ibrcom 237 . . . . . . . 8 ((𝑦Q𝑧Q) → (𝑥 = (𝑦𝐺𝑧) → 𝑥Q))
61, 2, 5syl2an 493 . . . . . . 7 (((𝑤P𝑦𝑤) ∧ (𝑣P𝑧𝑣)) → (𝑥 = (𝑦𝐺𝑧) → 𝑥Q))
76an4s 886 . . . . . 6 (((𝑤P𝑣P) ∧ (𝑦𝑤𝑧𝑣)) → (𝑥 = (𝑦𝐺𝑧) → 𝑥Q))
87rexlimdvva 3067 . . . . 5 ((𝑤P𝑣P) → (∃𝑦𝑤𝑧𝑣 𝑥 = (𝑦𝐺𝑧) → 𝑥Q))
98abssdv 3709 . . . 4 ((𝑤P𝑣P) → {𝑥 ∣ ∃𝑦𝑤𝑧𝑣 𝑥 = (𝑦𝐺𝑧)} ⊆ Q)
10 nqex 9783 . . . 4 Q ∈ V
11 ssexg 4837 . . . 4 (({𝑥 ∣ ∃𝑦𝑤𝑧𝑣 𝑥 = (𝑦𝐺𝑧)} ⊆ QQ ∈ V) → {𝑥 ∣ ∃𝑦𝑤𝑧𝑣 𝑥 = (𝑦𝐺𝑧)} ∈ V)
129, 10, 11sylancl 695 . . 3 ((𝑤P𝑣P) → {𝑥 ∣ ∃𝑦𝑤𝑧𝑣 𝑥 = (𝑦𝐺𝑧)} ∈ V)
1312rgen2a 3006 . 2 𝑤P𝑣P {𝑥 ∣ ∃𝑦𝑤𝑧𝑣 𝑥 = (𝑦𝐺𝑧)} ∈ V
14 genp.1 . . 3 𝐹 = (𝑤P, 𝑣P ↦ {𝑥 ∣ ∃𝑦𝑤𝑧𝑣 𝑥 = (𝑦𝐺𝑧)})
1514fnmpt2 7283 . 2 (∀𝑤P𝑣P {𝑥 ∣ ∃𝑦𝑤𝑧𝑣 𝑥 = (𝑦𝐺𝑧)} ∈ V → 𝐹 Fn (P × P))
16 fndm 6028 . 2 (𝐹 Fn (P × P) → dom 𝐹 = (P × P))
1713, 15, 16mp2b 10 1 dom 𝐹 = (P × P)
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 383   = wceq 1523   ∈ wcel 2030  {cab 2637  ∀wral 2941  ∃wrex 2942  Vcvv 3231   ⊆ wss 3607   × cxp 5141  dom cdm 5143   Fn wfn 5921  (class class class)co 6690   ↦ cmpt2 6692  Qcnq 9712  Pcnp 9719 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-8 2032  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631  ax-sep 4814  ax-nul 4822  ax-pow 4873  ax-pr 4936  ax-un 6991  ax-inf2 8576 This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1055  df-3an 1056  df-tru 1526  df-ex 1745  df-nf 1750  df-sb 1938  df-eu 2502  df-mo 2503  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ne 2824  df-ral 2946  df-rex 2947  df-rab 2950  df-v 3233  df-sbc 3469  df-csb 3567  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-pss 3623  df-nul 3949  df-if 4120  df-pw 4193  df-sn 4211  df-pr 4213  df-tp 4215  df-op 4217  df-uni 4469  df-iun 4554  df-br 4686  df-opab 4746  df-mpt 4763  df-tr 4786  df-id 5053  df-eprel 5058  df-po 5064  df-so 5065  df-fr 5102  df-we 5104  df-xp 5149  df-rel 5150  df-cnv 5151  df-co 5152  df-dm 5153  df-rn 5154  df-res 5155  df-ima 5156  df-ord 5764  df-on 5765  df-lim 5766  df-suc 5767  df-iota 5889  df-fun 5928  df-fn 5929  df-f 5930  df-fv 5934  df-oprab 6694  df-mpt2 6695  df-om 7108  df-1st 7210  df-2nd 7211  df-ni 9732  df-nq 9772  df-np 9841 This theorem is referenced by:  dmplp  9872  dmmp  9873
 Copyright terms: Public domain W3C validator