MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  gicsym Structured version   Visualization version   GIF version

Theorem gicsym 18414
Description: Isomorphism is symmetric. (Contributed by Mario Carneiro, 21-Apr-2016.)
Assertion
Ref Expression
gicsym (𝑅𝑔 𝑆𝑆𝑔 𝑅)

Proof of Theorem gicsym
Dummy variable 𝑓 is distinct from all other variables.
StepHypRef Expression
1 brgic 18409 . 2 (𝑅𝑔 𝑆 ↔ (𝑅 GrpIso 𝑆) ≠ ∅)
2 n0 4310 . . 3 ((𝑅 GrpIso 𝑆) ≠ ∅ ↔ ∃𝑓 𝑓 ∈ (𝑅 GrpIso 𝑆))
3 gimcnv 18407 . . . . 5 (𝑓 ∈ (𝑅 GrpIso 𝑆) → 𝑓 ∈ (𝑆 GrpIso 𝑅))
4 brgici 18410 . . . . 5 (𝑓 ∈ (𝑆 GrpIso 𝑅) → 𝑆𝑔 𝑅)
53, 4syl 17 . . . 4 (𝑓 ∈ (𝑅 GrpIso 𝑆) → 𝑆𝑔 𝑅)
65exlimiv 1931 . . 3 (∃𝑓 𝑓 ∈ (𝑅 GrpIso 𝑆) → 𝑆𝑔 𝑅)
72, 6sylbi 219 . 2 ((𝑅 GrpIso 𝑆) ≠ ∅ → 𝑆𝑔 𝑅)
81, 7sylbi 219 1 (𝑅𝑔 𝑆𝑆𝑔 𝑅)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wex 1780  wcel 2114  wne 3016  c0 4291   class class class wbr 5066  ccnv 5554  (class class class)co 7156   GrpIso cgim 18397  𝑔 cgic 18398
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2793  ax-rep 5190  ax-sep 5203  ax-nul 5210  ax-pow 5266  ax-pr 5330  ax-un 7461
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-ral 3143  df-rex 3144  df-reu 3145  df-rab 3147  df-v 3496  df-sbc 3773  df-csb 3884  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4568  df-pr 4570  df-op 4574  df-uni 4839  df-iun 4921  df-br 5067  df-opab 5129  df-mpt 5147  df-id 5460  df-xp 5561  df-rel 5562  df-cnv 5563  df-co 5564  df-dm 5565  df-rn 5566  df-res 5567  df-ima 5568  df-suc 6197  df-iota 6314  df-fun 6357  df-fn 6358  df-f 6359  df-f1 6360  df-fo 6361  df-f1o 6362  df-fv 6363  df-ov 7159  df-oprab 7160  df-mpo 7161  df-1st 7689  df-2nd 7690  df-1o 8102  df-mgm 17852  df-sgrp 17901  df-mnd 17912  df-grp 18106  df-ghm 18356  df-gim 18399  df-gic 18400
This theorem is referenced by:  gicer  18416  cygznlem3  20716  cygth  20718  cyggic  20719
  Copyright terms: Public domain W3C validator