HomeHome Metamath Proof Explorer
Theorem List (p. 185 of 425)
< Previous  Next >
Bad symbols? Try the
GIF version.

Mirrors  >  Metamath Home Page  >  MPE Home Page  >  Theorem List Contents  >  Recent Proofs       This page: Page List

Color key:    Metamath Proof Explorer  Metamath Proof Explorer
(1-26947)
  Hilbert Space Explorer  Hilbert Space Explorer
(26948-28472)
  Users' Mathboxes  Users' Mathboxes
(28473-42426)
 

Theorem List for Metamath Proof Explorer - 18401-18500   *Has distinct variable group(s)
TypeLabelDescription
Statement
 
Syntaxcinvr 18401 Extend class notation with multiplicative inverse.
class invr
 
Definitiondf-invr 18402 Define multiplicative inverse. (Contributed by NM, 21-Sep-2011.)
invr = (𝑟 ∈ V ↦ (invg‘((mulGrp‘𝑟) ↾s (Unit‘𝑟))))
 
Theoreminvrfval 18403 Multiplicative inverse function for a division ring. (Contributed by NM, 21-Sep-2011.) (Revised by Mario Carneiro, 25-Dec-2014.)
𝑈 = (Unit‘𝑅)    &   𝐺 = ((mulGrp‘𝑅) ↾s 𝑈)    &   𝐼 = (invr𝑅)       𝐼 = (invg𝐺)
 
Theoremunitinvcl 18404 The inverse of a unit exists and is a unit. (Contributed by Mario Carneiro, 2-Dec-2014.)
𝑈 = (Unit‘𝑅)    &   𝐼 = (invr𝑅)       ((𝑅 ∈ Ring ∧ 𝑋𝑈) → (𝐼𝑋) ∈ 𝑈)
 
Theoremunitinvinv 18405 The inverse of the inverse of a unit is the same element. (Contributed by Mario Carneiro, 4-Dec-2014.)
𝑈 = (Unit‘𝑅)    &   𝐼 = (invr𝑅)       ((𝑅 ∈ Ring ∧ 𝑋𝑈) → (𝐼‘(𝐼𝑋)) = 𝑋)
 
Theoremringinvcl 18406 The inverse of a unit is an element of the ring. (Contributed by Mario Carneiro, 2-Dec-2014.)
𝑈 = (Unit‘𝑅)    &   𝐼 = (invr𝑅)    &   𝐵 = (Base‘𝑅)       ((𝑅 ∈ Ring ∧ 𝑋𝑈) → (𝐼𝑋) ∈ 𝐵)
 
Theoremunitlinv 18407 A unit times its inverse is the identity. (Contributed by Mario Carneiro, 2-Dec-2014.)
𝑈 = (Unit‘𝑅)    &   𝐼 = (invr𝑅)    &    · = (.r𝑅)    &    1 = (1r𝑅)       ((𝑅 ∈ Ring ∧ 𝑋𝑈) → ((𝐼𝑋) · 𝑋) = 1 )
 
Theoremunitrinv 18408 A unit times its inverse is the identity. (Contributed by Mario Carneiro, 2-Dec-2014.)
𝑈 = (Unit‘𝑅)    &   𝐼 = (invr𝑅)    &    · = (.r𝑅)    &    1 = (1r𝑅)       ((𝑅 ∈ Ring ∧ 𝑋𝑈) → (𝑋 · (𝐼𝑋)) = 1 )
 
Theorem1rinv 18409 The inverse of the identity is the identity. (Contributed by Mario Carneiro, 18-Jun-2015.)
𝐼 = (invr𝑅)    &    1 = (1r𝑅)       (𝑅 ∈ Ring → (𝐼1 ) = 1 )
 
Theorem0unit 18410 The additive identity is a unit if and only if 1 = 0, i.e. we are in the zero ring. (Contributed by Mario Carneiro, 4-Dec-2014.)
𝑈 = (Unit‘𝑅)    &    0 = (0g𝑅)    &    1 = (1r𝑅)       (𝑅 ∈ Ring → ( 0𝑈1 = 0 ))
 
Theoremunitnegcl 18411 The negative of a unit is a unit. (Contributed by Mario Carneiro, 4-Dec-2014.)
𝑈 = (Unit‘𝑅)    &   𝑁 = (invg𝑅)       ((𝑅 ∈ Ring ∧ 𝑋𝑈) → (𝑁𝑋) ∈ 𝑈)
 
Syntaxcdvr 18412 Extend class notation with ring division.
class /r
 
Definitiondf-dvr 18413* Define ring division. (Contributed by Mario Carneiro, 2-Jul-2014.)
/r = (𝑟 ∈ V ↦ (𝑥 ∈ (Base‘𝑟), 𝑦 ∈ (Unit‘𝑟) ↦ (𝑥(.r𝑟)((invr𝑟)‘𝑦))))
 
Theoremdvrfval 18414* Division operation in a ring. (Contributed by Mario Carneiro, 2-Jul-2014.) (Revised by Mario Carneiro, 2-Dec-2014.)
𝐵 = (Base‘𝑅)    &    · = (.r𝑅)    &   𝑈 = (Unit‘𝑅)    &   𝐼 = (invr𝑅)    &    / = (/r𝑅)        / = (𝑥𝐵, 𝑦𝑈 ↦ (𝑥 · (𝐼𝑦)))
 
Theoremdvrval 18415 Division operation in a ring. (Contributed by Mario Carneiro, 2-Jul-2014.) (Revised by Mario Carneiro, 2-Dec-2014.)
𝐵 = (Base‘𝑅)    &    · = (.r𝑅)    &   𝑈 = (Unit‘𝑅)    &   𝐼 = (invr𝑅)    &    / = (/r𝑅)       ((𝑋𝐵𝑌𝑈) → (𝑋 / 𝑌) = (𝑋 · (𝐼𝑌)))
 
Theoremdvrcl 18416 Closure of division operation. (Contributed by Mario Carneiro, 2-Jul-2014.)
𝐵 = (Base‘𝑅)    &   𝑈 = (Unit‘𝑅)    &    / = (/r𝑅)       ((𝑅 ∈ Ring ∧ 𝑋𝐵𝑌𝑈) → (𝑋 / 𝑌) ∈ 𝐵)
 
Theoremunitdvcl 18417 The units are closed under division. (Contributed by Mario Carneiro, 2-Jul-2014.)
𝑈 = (Unit‘𝑅)    &    / = (/r𝑅)       ((𝑅 ∈ Ring ∧ 𝑋𝑈𝑌𝑈) → (𝑋 / 𝑌) ∈ 𝑈)
 
Theoremdvrid 18418 A cancellation law for division. (divid 10463 analog.) (Contributed by Mario Carneiro, 18-Jun-2015.)
𝑈 = (Unit‘𝑅)    &    / = (/r𝑅)    &    1 = (1r𝑅)       ((𝑅 ∈ Ring ∧ 𝑋𝑈) → (𝑋 / 𝑋) = 1 )
 
Theoremdvr1 18419 A cancellation law for division. (div1 10465 analog.) (Contributed by Mario Carneiro, 18-Jun-2015.)
𝐵 = (Base‘𝑅)    &    / = (/r𝑅)    &    1 = (1r𝑅)       ((𝑅 ∈ Ring ∧ 𝑋𝐵) → (𝑋 / 1 ) = 𝑋)
 
Theoremdvrass 18420 An associative law for division. (divass 10452 analog.) (Contributed by Mario Carneiro, 4-Dec-2014.)
𝐵 = (Base‘𝑅)    &   𝑈 = (Unit‘𝑅)    &    / = (/r𝑅)    &    · = (.r𝑅)       ((𝑅 ∈ Ring ∧ (𝑋𝐵𝑌𝐵𝑍𝑈)) → ((𝑋 · 𝑌) / 𝑍) = (𝑋 · (𝑌 / 𝑍)))
 
Theoremdvrcan1 18421 A cancellation law for division. (divcan1 10443 analog.) (Contributed by Mario Carneiro, 2-Jul-2014.) (Revised by Mario Carneiro, 2-Dec-2014.)
𝐵 = (Base‘𝑅)    &   𝑈 = (Unit‘𝑅)    &    / = (/r𝑅)    &    · = (.r𝑅)       ((𝑅 ∈ Ring ∧ 𝑋𝐵𝑌𝑈) → ((𝑋 / 𝑌) · 𝑌) = 𝑋)
 
Theoremdvrcan3 18422 A cancellation law for division. (divcan3 10460 analog.) (Contributed by Mario Carneiro, 2-Jul-2014.) (Revised by Mario Carneiro, 18-Jun-2015.)
𝐵 = (Base‘𝑅)    &   𝑈 = (Unit‘𝑅)    &    / = (/r𝑅)    &    · = (.r𝑅)       ((𝑅 ∈ Ring ∧ 𝑋𝐵𝑌𝑈) → ((𝑋 · 𝑌) / 𝑌) = 𝑋)
 
Theoremdvreq1 18423 A cancellation law for division. (diveq1 10467 analog.) (Contributed by Mario Carneiro, 28-Apr-2016.)
𝐵 = (Base‘𝑅)    &   𝑈 = (Unit‘𝑅)    &    / = (/r𝑅)    &    1 = (1r𝑅)       ((𝑅 ∈ Ring ∧ 𝑋𝐵𝑌𝑈) → ((𝑋 / 𝑌) = 1𝑋 = 𝑌))
 
Theoremringinvdv 18424 Write the inverse function in terms of division. (Contributed by Mario Carneiro, 2-Jul-2014.)
𝐵 = (Base‘𝑅)    &   𝑈 = (Unit‘𝑅)    &    / = (/r𝑅)    &    1 = (1r𝑅)    &   𝐼 = (invr𝑅)       ((𝑅 ∈ Ring ∧ 𝑋𝑈) → (𝐼𝑋) = ( 1 / 𝑋))
 
Theoremrngidpropd 18425* The ring identity depends only on the ring's base set and multiplication operation. (Contributed by Mario Carneiro, 26-Dec-2014.)
(𝜑𝐵 = (Base‘𝐾))    &   (𝜑𝐵 = (Base‘𝐿))    &   ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → (𝑥(.r𝐾)𝑦) = (𝑥(.r𝐿)𝑦))       (𝜑 → (1r𝐾) = (1r𝐿))
 
Theoremdvdsrpropd 18426* The divisibility relation depends only on the ring's base set and multiplication operation. (Contributed by Mario Carneiro, 26-Dec-2014.)
(𝜑𝐵 = (Base‘𝐾))    &   (𝜑𝐵 = (Base‘𝐿))    &   ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → (𝑥(.r𝐾)𝑦) = (𝑥(.r𝐿)𝑦))       (𝜑 → (∥r𝐾) = (∥r𝐿))
 
Theoremunitpropd 18427* The set of units depends only on the ring's base set and multiplication operation. (Contributed by Mario Carneiro, 26-Dec-2014.)
(𝜑𝐵 = (Base‘𝐾))    &   (𝜑𝐵 = (Base‘𝐿))    &   ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → (𝑥(.r𝐾)𝑦) = (𝑥(.r𝐿)𝑦))       (𝜑 → (Unit‘𝐾) = (Unit‘𝐿))
 
Theoreminvrpropd 18428* The ring inverse function depends only on the ring's base set and multiplication operation. (Contributed by Mario Carneiro, 26-Dec-2014.) (Revised by Mario Carneiro, 5-Oct-2015.)
(𝜑𝐵 = (Base‘𝐾))    &   (𝜑𝐵 = (Base‘𝐿))    &   ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → (𝑥(.r𝐾)𝑦) = (𝑥(.r𝐿)𝑦))       (𝜑 → (invr𝐾) = (invr𝐿))
 
Theoremisirred 18429* An irreducible element of a ring is a non-unit that is not the product of two non-units. (Contributed by Mario Carneiro, 4-Dec-2014.)
𝐵 = (Base‘𝑅)    &   𝑈 = (Unit‘𝑅)    &   𝐼 = (Irred‘𝑅)    &   𝑁 = (𝐵𝑈)    &    · = (.r𝑅)       (𝑋𝐼 ↔ (𝑋𝑁 ∧ ∀𝑥𝑁𝑦𝑁 (𝑥 · 𝑦) ≠ 𝑋))
 
Theoremisnirred 18430* The property of being a non-irreducible (reducible) element in a ring. (Contributed by Mario Carneiro, 4-Dec-2014.)
𝐵 = (Base‘𝑅)    &   𝑈 = (Unit‘𝑅)    &   𝐼 = (Irred‘𝑅)    &   𝑁 = (𝐵𝑈)    &    · = (.r𝑅)       (𝑋𝐵 → (¬ 𝑋𝐼 ↔ (𝑋𝑈 ∨ ∃𝑥𝑁𝑦𝑁 (𝑥 · 𝑦) = 𝑋)))
 
Theoremisirred2 18431* Expand out the class difference from isirred 18429. (Contributed by Mario Carneiro, 4-Dec-2014.)
𝐵 = (Base‘𝑅)    &   𝑈 = (Unit‘𝑅)    &   𝐼 = (Irred‘𝑅)    &    · = (.r𝑅)       (𝑋𝐼 ↔ (𝑋𝐵 ∧ ¬ 𝑋𝑈 ∧ ∀𝑥𝐵𝑦𝐵 ((𝑥 · 𝑦) = 𝑋 → (𝑥𝑈𝑦𝑈))))
 
Theoremopprirred 18432 Irreducibility is symmetric, so the irreducible elements of the opposite ring are the same as the original ring. (Contributed by Mario Carneiro, 4-Dec-2014.)
𝑆 = (oppr𝑅)    &   𝐼 = (Irred‘𝑅)       𝐼 = (Irred‘𝑆)
 
Theoremirredn0 18433 The additive identity is not irreducible. (Contributed by Mario Carneiro, 4-Dec-2014.)
𝐼 = (Irred‘𝑅)    &    0 = (0g𝑅)       ((𝑅 ∈ Ring ∧ 𝑋𝐼) → 𝑋0 )
 
Theoremirredcl 18434 An irreducible element is in the ring. (Contributed by Mario Carneiro, 4-Dec-2014.)
𝐼 = (Irred‘𝑅)    &   𝐵 = (Base‘𝑅)       (𝑋𝐼𝑋𝐵)
 
Theoremirrednu 18435 An irreducible element is not a unit. (Contributed by Mario Carneiro, 4-Dec-2014.)
𝐼 = (Irred‘𝑅)    &   𝑈 = (Unit‘𝑅)       (𝑋𝐼 → ¬ 𝑋𝑈)
 
Theoremirredn1 18436 The multiplicative identity is not irreducible. (Contributed by Mario Carneiro, 4-Dec-2014.)
𝐼 = (Irred‘𝑅)    &    1 = (1r𝑅)       ((𝑅 ∈ Ring ∧ 𝑋𝐼) → 𝑋1 )
 
Theoremirredrmul 18437 The product of an irreducible element and a unit is irreducible. (Contributed by Mario Carneiro, 4-Dec-2014.)
𝐼 = (Irred‘𝑅)    &   𝑈 = (Unit‘𝑅)    &    · = (.r𝑅)       ((𝑅 ∈ Ring ∧ 𝑋𝐼𝑌𝑈) → (𝑋 · 𝑌) ∈ 𝐼)
 
Theoremirredlmul 18438 The product of a unit and an irreducible element is irreducible. (Contributed by Mario Carneiro, 4-Dec-2014.)
𝐼 = (Irred‘𝑅)    &   𝑈 = (Unit‘𝑅)    &    · = (.r𝑅)       ((𝑅 ∈ Ring ∧ 𝑋𝑈𝑌𝐼) → (𝑋 · 𝑌) ∈ 𝐼)
 
Theoremirredmul 18439 If product of two elements is irreducible, then one of the elements must be a unit. (Contributed by Mario Carneiro, 4-Dec-2014.)
𝐼 = (Irred‘𝑅)    &   𝐵 = (Base‘𝑅)    &   𝑈 = (Unit‘𝑅)    &    · = (.r𝑅)       ((𝑋𝐵𝑌𝐵 ∧ (𝑋 · 𝑌) ∈ 𝐼) → (𝑋𝑈𝑌𝑈))
 
Theoremirredneg 18440 The negative of an irreducible element is irreducible. (Contributed by Mario Carneiro, 4-Dec-2014.)
𝐼 = (Irred‘𝑅)    &   𝑁 = (invg𝑅)       ((𝑅 ∈ Ring ∧ 𝑋𝐼) → (𝑁𝑋) ∈ 𝐼)
 
Theoremirrednegb 18441 An element is irreducible iff its negative is. (Contributed by Mario Carneiro, 4-Dec-2014.)
𝐼 = (Irred‘𝑅)    &   𝑁 = (invg𝑅)    &   𝐵 = (Base‘𝑅)       ((𝑅 ∈ Ring ∧ 𝑋𝐵) → (𝑋𝐼 ↔ (𝑁𝑋) ∈ 𝐼))
 
10.4.6  Ring homomorphisms
 
Syntaxcrh 18442 Extend class notation with the ring homomorphisms.
class RingHom
 
Syntaxcrs 18443 Extend class notation with the ring isomorphisms.
class RingIso
 
Syntaxcric 18444 Extend class notation with the ring isomorphism relation.
class 𝑟
 
Definitiondf-rnghom 18445* Define the set of ring homomorphisms from 𝑟 to 𝑠. (Contributed by Stefan O'Rear, 7-Mar-2015.)
RingHom = (𝑟 ∈ Ring, 𝑠 ∈ Ring ↦ (Base‘𝑟) / 𝑣(Base‘𝑠) / 𝑤{𝑓 ∈ (𝑤𝑚 𝑣) ∣ ((𝑓‘(1r𝑟)) = (1r𝑠) ∧ ∀𝑥𝑣𝑦𝑣 ((𝑓‘(𝑥(+g𝑟)𝑦)) = ((𝑓𝑥)(+g𝑠)(𝑓𝑦)) ∧ (𝑓‘(𝑥(.r𝑟)𝑦)) = ((𝑓𝑥)(.r𝑠)(𝑓𝑦))))})
 
Definitiondf-rngiso 18446* Define the set of ring isomorphisms from 𝑟 to 𝑠. (Contributed by Stefan O'Rear, 7-Mar-2015.)
RingIso = (𝑟 ∈ V, 𝑠 ∈ V ↦ {𝑓 ∈ (𝑟 RingHom 𝑠) ∣ 𝑓 ∈ (𝑠 RingHom 𝑟)})
 
Theoremdfrhm2 18447* The property of a ring homomorphism can be decomposed into separate homomorphic conditions for addition and multiplication. (Contributed by Stefan O'Rear, 7-Mar-2015.)
RingHom = (𝑟 ∈ Ring, 𝑠 ∈ Ring ↦ ((𝑟 GrpHom 𝑠) ∩ ((mulGrp‘𝑟) MndHom (mulGrp‘𝑠))))
 
Definitiondf-ric 18448 Define the ring isomorphism relation, analogous to df-gic 17417: Two (unital) rings are said to be isomorphic iff they are connected by at least one isomorphism. Isomorphic rings share all global ring properties, but to relate local properties requires knowledge of a specific isomorphism. (Contributed by AV, 24-Dec-2019.)
𝑟 = ( RingIso “ (V ∖ 1𝑜))
 
Theoremrhmrcl1 18449 Reverse closure of a ring homomorphism. (Contributed by Stefan O'Rear, 7-Mar-2015.)
(𝐹 ∈ (𝑅 RingHom 𝑆) → 𝑅 ∈ Ring)
 
Theoremrhmrcl2 18450 Reverse closure of a ring homomorphism. (Contributed by Stefan O'Rear, 7-Mar-2015.)
(𝐹 ∈ (𝑅 RingHom 𝑆) → 𝑆 ∈ Ring)
 
Theoremisrhm 18451 A function is a ring homomorphism iff it preserves both addition and multiplication. (Contributed by Stefan O'Rear, 7-Mar-2015.)
𝑀 = (mulGrp‘𝑅)    &   𝑁 = (mulGrp‘𝑆)       (𝐹 ∈ (𝑅 RingHom 𝑆) ↔ ((𝑅 ∈ Ring ∧ 𝑆 ∈ Ring) ∧ (𝐹 ∈ (𝑅 GrpHom 𝑆) ∧ 𝐹 ∈ (𝑀 MndHom 𝑁))))
 
Theoremrhmmhm 18452 A ring homomorphism is a homomorphism of multiplicative monoids. (Contributed by Stefan O'Rear, 7-Mar-2015.)
𝑀 = (mulGrp‘𝑅)    &   𝑁 = (mulGrp‘𝑆)       (𝐹 ∈ (𝑅 RingHom 𝑆) → 𝐹 ∈ (𝑀 MndHom 𝑁))
 
Theoremisrim0 18453 An isomorphism of rings is a homomorphism whose converse is also a homomorphism . (Contributed by AV, 22-Oct-2019.)
((𝑅𝑉𝑆𝑊) → (𝐹 ∈ (𝑅 RingIso 𝑆) ↔ (𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐹 ∈ (𝑆 RingHom 𝑅))))
 
Theoremrimrcl 18454 Reverse closure for an isomorphism of rings. (Contributed by AV, 22-Oct-2019.)
(𝐹 ∈ (𝑅 RingIso 𝑆) → (𝑅 ∈ V ∧ 𝑆 ∈ V))
 
Theoremrhmghm 18455 A ring homomorphism is an additive group homomorphism. (Contributed by Stefan O'Rear, 7-Mar-2015.)
(𝐹 ∈ (𝑅 RingHom 𝑆) → 𝐹 ∈ (𝑅 GrpHom 𝑆))
 
Theoremrhmf 18456 A ring homomorphism is a function. (Contributed by Stefan O'Rear, 8-Mar-2015.)
𝐵 = (Base‘𝑅)    &   𝐶 = (Base‘𝑆)       (𝐹 ∈ (𝑅 RingHom 𝑆) → 𝐹:𝐵𝐶)
 
Theoremrhmmul 18457 A homomorphism of rings preserves multiplication. (Contributed by Mario Carneiro, 12-Jun-2015.)
𝑋 = (Base‘𝑅)    &    · = (.r𝑅)    &    × = (.r𝑆)       ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐴𝑋𝐵𝑋) → (𝐹‘(𝐴 · 𝐵)) = ((𝐹𝐴) × (𝐹𝐵)))
 
Theoremisrhm2d 18458* Demonstration of ring homomorphism. (Contributed by Mario Carneiro, 13-Jun-2015.)
𝐵 = (Base‘𝑅)    &    1 = (1r𝑅)    &   𝑁 = (1r𝑆)    &    · = (.r𝑅)    &    × = (.r𝑆)    &   (𝜑𝑅 ∈ Ring)    &   (𝜑𝑆 ∈ Ring)    &   (𝜑 → (𝐹1 ) = 𝑁)    &   ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → (𝐹‘(𝑥 · 𝑦)) = ((𝐹𝑥) × (𝐹𝑦)))    &   (𝜑𝐹 ∈ (𝑅 GrpHom 𝑆))       (𝜑𝐹 ∈ (𝑅 RingHom 𝑆))
 
Theoremisrhmd 18459* Demonstration of ring homomorphism. (Contributed by Stefan O'Rear, 8-Mar-2015.)
𝐵 = (Base‘𝑅)    &    1 = (1r𝑅)    &   𝑁 = (1r𝑆)    &    · = (.r𝑅)    &    × = (.r𝑆)    &   (𝜑𝑅 ∈ Ring)    &   (𝜑𝑆 ∈ Ring)    &   (𝜑 → (𝐹1 ) = 𝑁)    &   ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → (𝐹‘(𝑥 · 𝑦)) = ((𝐹𝑥) × (𝐹𝑦)))    &   𝐶 = (Base‘𝑆)    &    + = (+g𝑅)    &    = (+g𝑆)    &   (𝜑𝐹:𝐵𝐶)    &   ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → (𝐹‘(𝑥 + 𝑦)) = ((𝐹𝑥) (𝐹𝑦)))       (𝜑𝐹 ∈ (𝑅 RingHom 𝑆))
 
Theoremrhm1 18460 Ring homomorphisms are required to fix 1. (Contributed by Stefan O'Rear, 8-Mar-2015.)
1 = (1r𝑅)    &   𝑁 = (1r𝑆)       (𝐹 ∈ (𝑅 RingHom 𝑆) → (𝐹1 ) = 𝑁)
 
Theoremidrhm 18461 The identity homomorphism on a ring. (Contributed by AV, 14-Feb-2020.)
𝐵 = (Base‘𝑅)       (𝑅 ∈ Ring → ( I ↾ 𝐵) ∈ (𝑅 RingHom 𝑅))
 
Theoremrhmf1o 18462 A ring homomorphism is bijective iff its converse is also a ring homomorphism. (Contributed by AV, 22-Oct-2019.)
𝐵 = (Base‘𝑅)    &   𝐶 = (Base‘𝑆)       (𝐹 ∈ (𝑅 RingHom 𝑆) → (𝐹:𝐵1-1-onto𝐶𝐹 ∈ (𝑆 RingHom 𝑅)))
 
Theoremisrim 18463 An isomorphism of rings is a bijective homomorphism. (Contributed by AV, 22-Oct-2019.)
𝐵 = (Base‘𝑅)    &   𝐶 = (Base‘𝑆)       ((𝑅𝑉𝑆𝑊) → (𝐹 ∈ (𝑅 RingIso 𝑆) ↔ (𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐹:𝐵1-1-onto𝐶)))
 
Theoremrimf1o 18464 An isomorphism of rings is a bijection. (Contributed by AV, 22-Oct-2019.)
𝐵 = (Base‘𝑅)    &   𝐶 = (Base‘𝑆)       (𝐹 ∈ (𝑅 RingIso 𝑆) → 𝐹:𝐵1-1-onto𝐶)
 
Theoremrimrhm 18465 An isomorphism of rings is a homomorphism. (Contributed by AV, 22-Oct-2019.)
𝐵 = (Base‘𝑅)    &   𝐶 = (Base‘𝑆)       (𝐹 ∈ (𝑅 RingIso 𝑆) → 𝐹 ∈ (𝑅 RingHom 𝑆))
 
Theoremrimgim 18466 An isomorphism of rings is an isomorphism of their additive groups. (Contributed by AV, 24-Dec-2019.)
(𝐹 ∈ (𝑅 RingIso 𝑆) → 𝐹 ∈ (𝑅 GrpIso 𝑆))
 
Theoremrhmco 18467 The composition of ring homomorphisms is a homomorphism. (Contributed by Mario Carneiro, 12-Jun-2015.)
((𝐹 ∈ (𝑇 RingHom 𝑈) ∧ 𝐺 ∈ (𝑆 RingHom 𝑇)) → (𝐹𝐺) ∈ (𝑆 RingHom 𝑈))
 
Theorempwsco1rhm 18468* Right composition with a function on the index sets yields a ring homomorphism of structure powers. (Contributed by Mario Carneiro, 12-Jun-2015.)
𝑌 = (𝑅s 𝐴)    &   𝑍 = (𝑅s 𝐵)    &   𝐶 = (Base‘𝑍)    &   (𝜑𝑅 ∈ Ring)    &   (𝜑𝐴𝑉)    &   (𝜑𝐵𝑊)    &   (𝜑𝐹:𝐴𝐵)       (𝜑 → (𝑔𝐶 ↦ (𝑔𝐹)) ∈ (𝑍 RingHom 𝑌))
 
Theorempwsco2rhm 18469* Left composition with a ring homomorphism yields a ring homomorphism of structure powers. (Contributed by Mario Carneiro, 12-Jun-2015.)
𝑌 = (𝑅s 𝐴)    &   𝑍 = (𝑆s 𝐴)    &   𝐵 = (Base‘𝑌)    &   (𝜑𝐴𝑉)    &   (𝜑𝐹 ∈ (𝑅 RingHom 𝑆))       (𝜑 → (𝑔𝐵 ↦ (𝐹𝑔)) ∈ (𝑌 RingHom 𝑍))
 
Theoremf1rhm0to0 18470 If a ring homomorphism 𝐹 is injective, it maps the zero of one ring (and only the zero) to the zero of the other ring. (Contributed by AV, 24-Oct-2019.)
𝐴 = (Base‘𝑅)    &   𝐵 = (Base‘𝑆)    &   𝑁 = (0g𝑆)    &    0 = (0g𝑅)       ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐹:𝐴1-1𝐵𝑋𝐴) → ((𝐹𝑋) = 𝑁𝑋 = 0 ))
 
Theoremf1rhm0to0ALT 18471 Alternate proof for f1rhm0to0 18470. Using ghmf1 17404 does not make the proof shorter and requires disjoint variable restrictions! (Contributed by AV, 24-Oct-2019.) (New usage is discouraged.) (Proof modification is discouraged.)
𝐴 = (Base‘𝑅)    &   𝐵 = (Base‘𝑆)    &   𝑁 = (0g𝑆)    &    0 = (0g𝑅)       ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐹:𝐴1-1𝐵𝑋𝐴) → ((𝐹𝑋) = 𝑁𝑋 = 0 ))
 
Theoremrim0to0 18472 A ring isomorphism maps the zero of one ring (and only the zero) to the zero of the other ring. (Contributed by AV, 24-Oct-2019.)
𝐴 = (Base‘𝑅)    &   𝐵 = (Base‘𝑆)    &   𝑁 = (0g𝑆)    &    0 = (0g𝑅)       ((𝐹 ∈ (𝑅 RingIso 𝑆) ∧ 𝑋𝐴) → ((𝐹𝑋) = 𝑁𝑋 = 0 ))
 
Theoremkerf1hrm 18473 A ring homomorphism 𝐹 is injective if and only if its kernel is the singleton {𝑁}. (Contributed by Thierry Arnoux, 27-Oct-2017.) (Proof shortened by AV, 24-Oct-2019.)
𝐴 = (Base‘𝑅)    &   𝐵 = (Base‘𝑆)    &   𝑁 = (0g𝑅)    &    0 = (0g𝑆)       (𝐹 ∈ (𝑅 RingHom 𝑆) → (𝐹:𝐴1-1𝐵 ↔ (𝐹 “ { 0 }) = {𝑁}))
 
Theorembrric 18474 The relation "is isomorphic to" for (unital) rings. (Contributed by AV, 24-Dec-2019.)
(𝑅𝑟 𝑆 ↔ (𝑅 RingIso 𝑆) ≠ ∅)
 
Theorembrric2 18475* The relation "is isomorphic to" for (unital) rings. This theorem corresponds to the definition df-risc 32842 of the ring isomorphism relation in JM's mathbox. (Contributed by AV, 24-Dec-2019.)
(𝑅𝑟 𝑆 ↔ ((𝑅 ∈ Ring ∧ 𝑆 ∈ Ring) ∧ ∃𝑓 𝑓 ∈ (𝑅 RingIso 𝑆)))
 
Theoremricgic 18476 If two rings are (ring) isomorphic, their additive groups are (group) isomorphic. (Contributed by AV, 24-Dec-2019.)
(𝑅𝑟 𝑆𝑅𝑔 𝑆)
 
10.5  Division rings and fields
 
10.5.1  Definition and basic properties
 
Syntaxcdr 18477 Extend class notation with class of all division rings.
class DivRing
 
Syntaxcfield 18478 Class of fields.
class Field
 
Definitiondf-drng 18479 Define class of all division rings. A division ring is a ring in which the set of units is exactly the nonzero elements of the ring. (Contributed by NM, 18-Oct-2012.)
DivRing = {𝑟 ∈ Ring ∣ (Unit‘𝑟) = ((Base‘𝑟) ∖ {(0g𝑟)})}
 
Definitiondf-field 18480 A field is a commutative division ring. (Contributed by Mario Carneiro, 17-Jun-2015.)
Field = (DivRing ∩ CRing)
 
Theoremisdrng 18481 The predicate "is a division ring". (Contributed by NM, 18-Oct-2012.) (Revised by Mario Carneiro, 2-Dec-2014.)
𝐵 = (Base‘𝑅)    &   𝑈 = (Unit‘𝑅)    &    0 = (0g𝑅)       (𝑅 ∈ DivRing ↔ (𝑅 ∈ Ring ∧ 𝑈 = (𝐵 ∖ { 0 })))
 
Theoremdrngunit 18482 Elementhood in the set of units when 𝑅 is a division ring. (Contributed by Mario Carneiro, 2-Dec-2014.)
𝐵 = (Base‘𝑅)    &   𝑈 = (Unit‘𝑅)    &    0 = (0g𝑅)       (𝑅 ∈ DivRing → (𝑋𝑈 ↔ (𝑋𝐵𝑋0 )))
 
Theoremdrngui 18483 The set of units of a division ring. (Contributed by Mario Carneiro, 2-Dec-2014.)
𝐵 = (Base‘𝑅)    &    0 = (0g𝑅)    &   𝑅 ∈ DivRing       (𝐵 ∖ { 0 }) = (Unit‘𝑅)
 
Theoremdrngring 18484 A division ring is a ring. (Contributed by NM, 8-Sep-2011.)
(𝑅 ∈ DivRing → 𝑅 ∈ Ring)
 
Theoremdrnggrp 18485 A division ring is a group. (Contributed by NM, 8-Sep-2011.)
(𝑅 ∈ DivRing → 𝑅 ∈ Grp)
 
Theoremisfld 18486 A field is a commutative division ring. (Contributed by Mario Carneiro, 17-Jun-2015.)
(𝑅 ∈ Field ↔ (𝑅 ∈ DivRing ∧ 𝑅 ∈ CRing))
 
Theoremisdrng2 18487 A division ring can equivalently be defined as a ring such that the nonzero elements form a group under multiplication (from which it follows that this is the same group as the group of units). (Contributed by Mario Carneiro, 2-Dec-2014.)
𝐵 = (Base‘𝑅)    &    0 = (0g𝑅)    &   𝐺 = ((mulGrp‘𝑅) ↾s (𝐵 ∖ { 0 }))       (𝑅 ∈ DivRing ↔ (𝑅 ∈ Ring ∧ 𝐺 ∈ Grp))
 
Theoremdrngprop 18488 If two structures have the same ring components (properties), one is a division ring iff the other one is. (Contributed by Mario Carneiro, 11-Oct-2013.) (Revised by Mario Carneiro, 28-Dec-2014.)
(Base‘𝐾) = (Base‘𝐿)    &   (+g𝐾) = (+g𝐿)    &   (.r𝐾) = (.r𝐿)       (𝐾 ∈ DivRing ↔ 𝐿 ∈ DivRing)
 
Theoremdrngmgp 18489 A division ring contains a multiplicative group. (Contributed by NM, 8-Sep-2011.)
𝐵 = (Base‘𝑅)    &    0 = (0g𝑅)    &   𝐺 = ((mulGrp‘𝑅) ↾s (𝐵 ∖ { 0 }))       (𝑅 ∈ DivRing → 𝐺 ∈ Grp)
 
Theoremdrngmcl 18490 The product of two nonzero elements of a division ring is nonzero. (Contributed by NM, 7-Sep-2011.)
𝐵 = (Base‘𝑅)    &    · = (.r𝑅)    &    0 = (0g𝑅)       ((𝑅 ∈ DivRing ∧ 𝑋 ∈ (𝐵 ∖ { 0 }) ∧ 𝑌 ∈ (𝐵 ∖ { 0 })) → (𝑋 · 𝑌) ∈ (𝐵 ∖ { 0 }))
 
Theoremdrngid 18491 A division ring's unit is the identity element of its multiplicative group. (Contributed by NM, 7-Sep-2011.)
𝐵 = (Base‘𝑅)    &    0 = (0g𝑅)    &    1 = (1r𝑅)    &   𝐺 = ((mulGrp‘𝑅) ↾s (𝐵 ∖ { 0 }))       (𝑅 ∈ DivRing → 1 = (0g𝐺))
 
Theoremdrngunz 18492 A division ring's unit is different from its zero. (Contributed by NM, 8-Sep-2011.)
0 = (0g𝑅)    &    1 = (1r𝑅)       (𝑅 ∈ DivRing → 10 )
 
Theoremdrngid2 18493 Properties showing that an element 𝐼 is the identity element of a division ring. (Contributed by Mario Carneiro, 11-Oct-2013.)
𝐵 = (Base‘𝑅)    &    · = (.r𝑅)    &    0 = (0g𝑅)    &    1 = (1r𝑅)       (𝑅 ∈ DivRing → ((𝐼𝐵𝐼0 ∧ (𝐼 · 𝐼) = 𝐼) ↔ 1 = 𝐼))
 
Theoremdrnginvrcl 18494 Closure of the multiplicative inverse in a division ring. (reccl 10441 analog.) (Contributed by NM, 19-Apr-2014.)
𝐵 = (Base‘𝑅)    &    0 = (0g𝑅)    &   𝐼 = (invr𝑅)       ((𝑅 ∈ DivRing ∧ 𝑋𝐵𝑋0 ) → (𝐼𝑋) ∈ 𝐵)
 
Theoremdrnginvrn0 18495 The multiplicative inverse in a division ring is nonzero. (recne0 10447 analog.) (Contributed by NM, 19-Apr-2014.)
𝐵 = (Base‘𝑅)    &    0 = (0g𝑅)    &   𝐼 = (invr𝑅)       ((𝑅 ∈ DivRing ∧ 𝑋𝐵𝑋0 ) → (𝐼𝑋) ≠ 0 )
 
Theoremdrnginvrl 18496 Property of the multiplicative inverse in a division ring. (recid2 10449 analog.) (Contributed by NM, 19-Apr-2014.)
𝐵 = (Base‘𝑅)    &    0 = (0g𝑅)    &    · = (.r𝑅)    &    1 = (1r𝑅)    &   𝐼 = (invr𝑅)       ((𝑅 ∈ DivRing ∧ 𝑋𝐵𝑋0 ) → ((𝐼𝑋) · 𝑋) = 1 )
 
Theoremdrnginvrr 18497 Property of the multiplicative inverse in a division ring. (recid 10448 analog.) (Contributed by NM, 19-Apr-2014.)
𝐵 = (Base‘𝑅)    &    0 = (0g𝑅)    &    · = (.r𝑅)    &    1 = (1r𝑅)    &   𝐼 = (invr𝑅)       ((𝑅 ∈ DivRing ∧ 𝑋𝐵𝑋0 ) → (𝑋 · (𝐼𝑋)) = 1 )
 
Theoremdrngmul0or 18498 A product is zero iff one of its factors is zero. (Contributed by NM, 8-Oct-2014.)
𝐵 = (Base‘𝑅)    &    0 = (0g𝑅)    &    · = (.r𝑅)    &   (𝜑𝑅 ∈ DivRing)    &   (𝜑𝑋𝐵)    &   (𝜑𝑌𝐵)       (𝜑 → ((𝑋 · 𝑌) = 0 ↔ (𝑋 = 0𝑌 = 0 )))
 
Theoremdrngmulne0 18499 A product is nonzero iff both its factors are nonzero. (Contributed by NM, 18-Oct-2014.)
𝐵 = (Base‘𝑅)    &    0 = (0g𝑅)    &    · = (.r𝑅)    &   (𝜑𝑅 ∈ DivRing)    &   (𝜑𝑋𝐵)    &   (𝜑𝑌𝐵)       (𝜑 → ((𝑋 · 𝑌) ≠ 0 ↔ (𝑋0𝑌0 )))
 
Theoremdrngmuleq0 18500 An element is zero iff its product with a nonzero element is zero. (Contributed by NM, 8-Oct-2014.)
𝐵 = (Base‘𝑅)    &    0 = (0g𝑅)    &    · = (.r𝑅)    &   (𝜑𝑅 ∈ DivRing)    &   (𝜑𝑋𝐵)    &   (𝜑𝑌𝐵)    &   (𝜑𝑌0 )       (𝜑 → ((𝑋 · 𝑌) = 0𝑋 = 0 ))
    < Previous  Next >

Page List
Jump to page: Contents  1 1-100 2 101-200 3 201-300 4 301-400 5 401-500 6 501-600 7 601-700 8 701-800 9 801-900 10 901-1000 11 1001-1100 12 1101-1200 13 1201-1300 14 1301-1400 15 1401-1500 16 1501-1600 17 1601-1700 18 1701-1800 19 1801-1900 20 1901-2000 21 2001-2100 22 2101-2200 23 2201-2300 24 2301-2400 25 2401-2500 26 2501-2600 27 2601-2700 28 2701-2800 29 2801-2900 30 2901-3000 31 3001-3100 32 3101-3200 33 3201-3300 34 3301-3400 35 3401-3500 36 3501-3600 37 3601-3700 38 3701-3800 39 3801-3900 40 3901-4000 41 4001-4100 42 4101-4200 43 4201-4300 44 4301-4400 45 4401-4500 46 4501-4600 47 4601-4700 48 4701-4800 49 4801-4900 50 4901-5000 51 5001-5100 52 5101-5200 53 5201-5300 54 5301-5400 55 5401-5500 56 5501-5600 57 5601-5700 58 5701-5800 59 5801-5900 60 5901-6000 61 6001-6100 62 6101-6200 63 6201-6300 64 6301-6400 65 6401-6500 66 6501-6600 67 6601-6700 68 6701-6800 69 6801-6900 70 6901-7000 71 7001-7100 72 7101-7200 73 7201-7300 74 7301-7400 75 7401-7500 76 7501-7600 77 7601-7700 78 7701-7800 79 7801-7900 80 7901-8000 81 8001-8100 82 8101-8200 83 8201-8300 84 8301-8400 85 8401-8500 86 8501-8600 87 8601-8700 88 8701-8800 89 8801-8900 90 8901-9000 91 9001-9100 92 9101-9200 93 9201-9300 94 9301-9400 95 9401-9500 96 9501-9600 97 9601-9700 98 9701-9800 99 9801-9900 100 9901-10000 101 10001-10100 102 10101-10200 103 10201-10300 104 10301-10400 105 10401-10500 106 10501-10600 107 10601-10700 108 10701-10800 109 10801-10900 110 10901-11000 111 11001-11100 112 11101-11200 113 11201-11300 114 11301-11400 115 11401-11500 116 11501-11600 117 11601-11700 118 11701-11800 119 11801-11900 120 11901-12000 121 12001-12100 122 12101-12200 123 12201-12300 124 12301-12400 125 12401-12500 126 12501-12600 127 12601-12700 128 12701-12800 129 12801-12900 130 12901-13000 131 13001-13100 132 13101-13200 133 13201-13300 134 13301-13400 135 13401-13500 136 13501-13600 137 13601-13700 138 13701-13800 139 13801-13900 140 13901-14000 141 14001-14100 142 14101-14200 143 14201-14300 144 14301-14400 145 14401-14500 146 14501-14600 147 14601-14700 148 14701-14800 149 14801-14900 150 14901-15000 151 15001-15100 152 15101-15200 153 15201-15300 154 15301-15400 155 15401-15500 156 15501-15600 157 15601-15700 158 15701-15800 159 15801-15900 160 15901-16000 161 16001-16100 162 16101-16200 163 16201-16300 164 16301-16400 165 16401-16500 166 16501-16600 167 16601-16700 168 16701-16800 169 16801-16900 170 16901-17000 171 17001-17100 172 17101-17200 173 17201-17300 174 17301-17400 175 17401-17500 176 17501-17600 177 17601-17700 178 17701-17800 179 17801-17900 180 17901-18000 181 18001-18100 182 18101-18200 183 18201-18300 184 18301-18400 185 18401-18500 186 18501-18600 187 18601-18700 188 18701-18800 189 18801-18900 190 18901-19000 191 19001-19100 192 19101-19200 193 19201-19300 194 19301-19400 195 19401-19500 196 19501-19600 197 19601-19700 198 19701-19800 199 19801-19900 200 19901-20000 201 20001-20100 202 20101-20200 203 20201-20300 204 20301-20400 205 20401-20500 206 20501-20600 207 20601-20700 208 20701-20800 209 20801-20900 210 20901-21000 211 21001-21100 212 21101-21200 213 21201-21300 214 21301-21400 215 21401-21500 216 21501-21600 217 21601-21700 218 21701-21800 219 21801-21900 220 21901-22000 221 22001-22100 222 22101-22200 223 22201-22300 224 22301-22400 225 22401-22500 226 22501-22600 227 22601-22700 228 22701-22800 229 22801-22900 230 22901-23000 231 23001-23100 232 23101-23200 233 23201-23300 234 23301-23400 235 23401-23500 236 23501-23600 237 23601-23700 238 23701-23800 239 23801-23900 240 23901-24000 241 24001-24100 242 24101-24200 243 24201-24300 244 24301-24400 245 24401-24500 246 24501-24600 247 24601-24700 248 24701-24800 249 24801-24900 250 24901-25000 251 25001-25100 252 25101-25200 253 25201-25300 254 25301-25400 255 25401-25500 256 25501-25600 257 25601-25700 258 25701-25800 259 25801-25900 260 25901-26000 261 26001-26100 262 26101-26200 263 26201-26300 264 26301-26400 265 26401-26500 266 26501-26600 267 26601-26700 268 26701-26800 269 26801-26900 270 26901-27000 271 27001-27100 272 27101-27200 273 27201-27300 274 27301-27400 275 27401-27500 276 27501-27600 277 27601-27700 278 27701-27800 279 27801-27900 280 27901-28000 281 28001-28100 282 28101-28200 283 28201-28300 284 28301-28400 285 28401-28500 286 28501-28600 287 28601-28700 288 28701-28800 289 28801-28900 290 28901-29000 291 29001-29100 292 29101-29200 293 29201-29300 294 29301-29400 295 29401-29500 296 29501-29600 297 29601-29700 298 29701-29800 299 29801-29900 300 29901-30000 301 30001-30100 302 30101-30200 303 30201-30300 304 30301-30400 305 30401-30500 306 30501-30600 307 30601-30700 308 30701-30800 309 30801-30900 310 30901-31000 311 31001-31100 312 31101-31200 313 31201-31300 314 31301-31400 315 31401-31500 316 31501-31600 317 31601-31700 318 31701-31800 319 31801-31900 320 31901-32000 321 32001-32100 322 32101-32200 323 32201-32300 324 32301-32400 325 32401-32500 326 32501-32600 327 32601-32700 328 32701-32800 329 32801-32900 330 32901-33000 331 33001-33100 332 33101-33200 333 33201-33300 334 33301-33400 335 33401-33500 336 33501-33600 337 33601-33700 338 33701-33800 339 33801-33900 340 33901-34000 341 34001-34100 342 34101-34200 343 34201-34300 344 34301-34400 345 34401-34500 346 34501-34600 347 34601-34700 348 34701-34800 349 34801-34900 350 34901-35000 351 35001-35100 352 35101-35200 353 35201-35300 354 35301-35400 355 35401-35500 356 35501-35600 357 35601-35700 358 35701-35800 359 35801-35900 360 35901-36000 361 36001-36100 362 36101-36200 363 36201-36300 364 36301-36400 365 36401-36500 366 36501-36600 367 36601-36700 368 36701-36800 369 36801-36900 370 36901-37000 371 37001-37100 372 37101-37200 373 37201-37300 374 37301-37400 375 37401-37500 376 37501-37600 377 37601-37700 378 37701-37800 379 37801-37900 380 37901-38000 381 38001-38100 382 38101-38200 383 38201-38300 384 38301-38400 385 38401-38500 386 38501-38600 387 38601-38700 388 38701-38800 389 38801-38900 390 38901-39000 391 39001-39100 392 39101-39200 393 39201-39300 394 39301-39400 395 39401-39500 396 39501-39600 397 39601-39700 398 39701-39800 399 39801-39900 400 39901-40000 401 40001-40100 402 40101-40200 403 40201-40300 404 40301-40400 405 40401-40500 406 40501-40600 407 40601-40700 408 40701-40800 409 40801-40900 410 40901-41000 411 41001-41100 412 41101-41200 413 41201-41300 414 41301-41400 415 41401-41500 416 41501-41600 417 41601-41700 418 41701-41800 419 41801-41900 420 41901-42000 421 42001-42100 422 42101-42200 423 42201-42300 424 42301-42400 425 42401-42426
  Copyright terms: Public domain < Previous  Next >