MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  gsumvallem2 Structured version   Visualization version   GIF version

Theorem gsumvallem2 17108
Description: Lemma for properties of the set of identities of 𝐺. The set of identities of a monoid is exactly the unique identity element. (Contributed by Mario Carneiro, 7-Dec-2014.)
Hypotheses
Ref Expression
gsumvallem2.b 𝐵 = (Base‘𝐺)
gsumvallem2.z 0 = (0g𝐺)
gsumvallem2.p + = (+g𝐺)
gsumvallem2.o 𝑂 = {𝑥𝐵 ∣ ∀𝑦𝐵 ((𝑥 + 𝑦) = 𝑦 ∧ (𝑦 + 𝑥) = 𝑦)}
Assertion
Ref Expression
gsumvallem2 (𝐺 ∈ Mnd → 𝑂 = { 0 })
Distinct variable groups:   𝑥,𝑦,𝐵   𝑥,𝐺,𝑦   𝑥, + ,𝑦   𝑥, 0 ,𝑦
Allowed substitution hints:   𝑂(𝑥,𝑦)

Proof of Theorem gsumvallem2
StepHypRef Expression
1 gsumvallem2.b . . 3 𝐵 = (Base‘𝐺)
2 gsumvallem2.z . . 3 0 = (0g𝐺)
3 gsumvallem2.p . . 3 + = (+g𝐺)
4 gsumvallem2.o . . 3 𝑂 = {𝑥𝐵 ∣ ∀𝑦𝐵 ((𝑥 + 𝑦) = 𝑦 ∧ (𝑦 + 𝑥) = 𝑦)}
51, 2, 3, 4mgmidsssn0 17005 . 2 (𝐺 ∈ Mnd → 𝑂 ⊆ { 0 })
61, 2mndidcl 17044 . . . 4 (𝐺 ∈ Mnd → 0𝐵)
71, 3, 2mndlrid 17046 . . . . 5 ((𝐺 ∈ Mnd ∧ 𝑦𝐵) → (( 0 + 𝑦) = 𝑦 ∧ (𝑦 + 0 ) = 𝑦))
87ralrimiva 2853 . . . 4 (𝐺 ∈ Mnd → ∀𝑦𝐵 (( 0 + 𝑦) = 𝑦 ∧ (𝑦 + 0 ) = 𝑦))
9 oveq1 6432 . . . . . . . 8 (𝑥 = 0 → (𝑥 + 𝑦) = ( 0 + 𝑦))
109eqeq1d 2516 . . . . . . 7 (𝑥 = 0 → ((𝑥 + 𝑦) = 𝑦 ↔ ( 0 + 𝑦) = 𝑦))
11 oveq2 6433 . . . . . . . 8 (𝑥 = 0 → (𝑦 + 𝑥) = (𝑦 + 0 ))
1211eqeq1d 2516 . . . . . . 7 (𝑥 = 0 → ((𝑦 + 𝑥) = 𝑦 ↔ (𝑦 + 0 ) = 𝑦))
1310, 12anbi12d 742 . . . . . 6 (𝑥 = 0 → (((𝑥 + 𝑦) = 𝑦 ∧ (𝑦 + 𝑥) = 𝑦) ↔ (( 0 + 𝑦) = 𝑦 ∧ (𝑦 + 0 ) = 𝑦)))
1413ralbidv 2873 . . . . 5 (𝑥 = 0 → (∀𝑦𝐵 ((𝑥 + 𝑦) = 𝑦 ∧ (𝑦 + 𝑥) = 𝑦) ↔ ∀𝑦𝐵 (( 0 + 𝑦) = 𝑦 ∧ (𝑦 + 0 ) = 𝑦)))
1514, 4elrab2 3237 . . . 4 ( 0𝑂 ↔ ( 0𝐵 ∧ ∀𝑦𝐵 (( 0 + 𝑦) = 𝑦 ∧ (𝑦 + 0 ) = 𝑦)))
166, 8, 15sylanbrc 694 . . 3 (𝐺 ∈ Mnd → 0𝑂)
1716snssd 4184 . 2 (𝐺 ∈ Mnd → { 0 } ⊆ 𝑂)
185, 17eqssd 3489 1 (𝐺 ∈ Mnd → 𝑂 = { 0 })
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 382   = wceq 1474  wcel 1938  wral 2800  {crab 2804  {csn 4028  cfv 5689  (class class class)co 6425  Basecbs 15600  +gcplusg 15673  0gc0g 15828  Mndcmnd 17030
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1700  ax-4 1713  ax-5 1793  ax-6 1838  ax-7 1885  ax-8 1940  ax-9 1947  ax-10 1966  ax-11 1971  ax-12 1983  ax-13 2137  ax-ext 2494  ax-sep 4607  ax-nul 4616  ax-pow 4668  ax-pr 4732
This theorem depends on definitions:  df-bi 195  df-or 383  df-an 384  df-3an 1032  df-tru 1477  df-ex 1695  df-nf 1699  df-sb 1831  df-eu 2366  df-mo 2367  df-clab 2501  df-cleq 2507  df-clel 2510  df-nfc 2644  df-ne 2686  df-ral 2805  df-rex 2806  df-reu 2807  df-rmo 2808  df-rab 2809  df-v 3079  df-sbc 3307  df-dif 3447  df-un 3449  df-in 3451  df-ss 3458  df-nul 3778  df-if 3940  df-sn 4029  df-pr 4031  df-op 4035  df-uni 4271  df-br 4482  df-opab 4542  df-mpt 4543  df-id 4847  df-xp 4938  df-rel 4939  df-cnv 4940  df-co 4941  df-dm 4942  df-iota 5653  df-fun 5691  df-fv 5697  df-riota 6387  df-ov 6428  df-0g 15830  df-mgm 16978  df-sgrp 17020  df-mnd 17031
This theorem is referenced by:  gsumz  17110  gsumval3a  18055
  Copyright terms: Public domain W3C validator