Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  hbtlem1 Structured version   Visualization version   GIF version

Theorem hbtlem1 39743
Description: Value of the leading coefficient sequence function. (Contributed by Stefan O'Rear, 31-Mar-2015.)
Hypotheses
Ref Expression
hbtlem.p 𝑃 = (Poly1𝑅)
hbtlem.u 𝑈 = (LIdeal‘𝑃)
hbtlem.s 𝑆 = (ldgIdlSeq‘𝑅)
hbtlem.d 𝐷 = ( deg1𝑅)
Assertion
Ref Expression
hbtlem1 ((𝑅𝑉𝐼𝑈𝑋 ∈ ℕ0) → ((𝑆𝐼)‘𝑋) = {𝑗 ∣ ∃𝑘𝐼 ((𝐷𝑘) ≤ 𝑋𝑗 = ((coe1𝑘)‘𝑋))})
Distinct variable groups:   𝑗,𝐼,𝑘   𝑅,𝑗,𝑘   𝑗,𝑋,𝑘
Allowed substitution hints:   𝐷(𝑗,𝑘)   𝑃(𝑗,𝑘)   𝑆(𝑗,𝑘)   𝑈(𝑗,𝑘)   𝑉(𝑗,𝑘)

Proof of Theorem hbtlem1
Dummy variables 𝑖 𝑟 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 hbtlem.s . . . . . 6 𝑆 = (ldgIdlSeq‘𝑅)
2 elex 3512 . . . . . . 7 (𝑅𝑉𝑅 ∈ V)
3 fveq2 6670 . . . . . . . . . . . 12 (𝑟 = 𝑅 → (Poly1𝑟) = (Poly1𝑅))
4 hbtlem.p . . . . . . . . . . . 12 𝑃 = (Poly1𝑅)
53, 4syl6eqr 2874 . . . . . . . . . . 11 (𝑟 = 𝑅 → (Poly1𝑟) = 𝑃)
65fveq2d 6674 . . . . . . . . . 10 (𝑟 = 𝑅 → (LIdeal‘(Poly1𝑟)) = (LIdeal‘𝑃))
7 hbtlem.u . . . . . . . . . 10 𝑈 = (LIdeal‘𝑃)
86, 7syl6eqr 2874 . . . . . . . . 9 (𝑟 = 𝑅 → (LIdeal‘(Poly1𝑟)) = 𝑈)
9 fveq2 6670 . . . . . . . . . . . . . . . 16 (𝑟 = 𝑅 → ( deg1𝑟) = ( deg1𝑅))
10 hbtlem.d . . . . . . . . . . . . . . . 16 𝐷 = ( deg1𝑅)
119, 10syl6eqr 2874 . . . . . . . . . . . . . . 15 (𝑟 = 𝑅 → ( deg1𝑟) = 𝐷)
1211fveq1d 6672 . . . . . . . . . . . . . 14 (𝑟 = 𝑅 → (( deg1𝑟)‘𝑘) = (𝐷𝑘))
1312breq1d 5076 . . . . . . . . . . . . 13 (𝑟 = 𝑅 → ((( deg1𝑟)‘𝑘) ≤ 𝑥 ↔ (𝐷𝑘) ≤ 𝑥))
1413anbi1d 631 . . . . . . . . . . . 12 (𝑟 = 𝑅 → (((( deg1𝑟)‘𝑘) ≤ 𝑥𝑗 = ((coe1𝑘)‘𝑥)) ↔ ((𝐷𝑘) ≤ 𝑥𝑗 = ((coe1𝑘)‘𝑥))))
1514rexbidv 3297 . . . . . . . . . . 11 (𝑟 = 𝑅 → (∃𝑘𝑖 ((( deg1𝑟)‘𝑘) ≤ 𝑥𝑗 = ((coe1𝑘)‘𝑥)) ↔ ∃𝑘𝑖 ((𝐷𝑘) ≤ 𝑥𝑗 = ((coe1𝑘)‘𝑥))))
1615abbidv 2885 . . . . . . . . . 10 (𝑟 = 𝑅 → {𝑗 ∣ ∃𝑘𝑖 ((( deg1𝑟)‘𝑘) ≤ 𝑥𝑗 = ((coe1𝑘)‘𝑥))} = {𝑗 ∣ ∃𝑘𝑖 ((𝐷𝑘) ≤ 𝑥𝑗 = ((coe1𝑘)‘𝑥))})
1716mpteq2dv 5162 . . . . . . . . 9 (𝑟 = 𝑅 → (𝑥 ∈ ℕ0 ↦ {𝑗 ∣ ∃𝑘𝑖 ((( deg1𝑟)‘𝑘) ≤ 𝑥𝑗 = ((coe1𝑘)‘𝑥))}) = (𝑥 ∈ ℕ0 ↦ {𝑗 ∣ ∃𝑘𝑖 ((𝐷𝑘) ≤ 𝑥𝑗 = ((coe1𝑘)‘𝑥))}))
188, 17mpteq12dv 5151 . . . . . . . 8 (𝑟 = 𝑅 → (𝑖 ∈ (LIdeal‘(Poly1𝑟)) ↦ (𝑥 ∈ ℕ0 ↦ {𝑗 ∣ ∃𝑘𝑖 ((( deg1𝑟)‘𝑘) ≤ 𝑥𝑗 = ((coe1𝑘)‘𝑥))})) = (𝑖𝑈 ↦ (𝑥 ∈ ℕ0 ↦ {𝑗 ∣ ∃𝑘𝑖 ((𝐷𝑘) ≤ 𝑥𝑗 = ((coe1𝑘)‘𝑥))})))
19 df-ldgis 39742 . . . . . . . 8 ldgIdlSeq = (𝑟 ∈ V ↦ (𝑖 ∈ (LIdeal‘(Poly1𝑟)) ↦ (𝑥 ∈ ℕ0 ↦ {𝑗 ∣ ∃𝑘𝑖 ((( deg1𝑟)‘𝑘) ≤ 𝑥𝑗 = ((coe1𝑘)‘𝑥))})))
2018, 19, 7mptfvmpt 6990 . . . . . . 7 (𝑅 ∈ V → (ldgIdlSeq‘𝑅) = (𝑖𝑈 ↦ (𝑥 ∈ ℕ0 ↦ {𝑗 ∣ ∃𝑘𝑖 ((𝐷𝑘) ≤ 𝑥𝑗 = ((coe1𝑘)‘𝑥))})))
212, 20syl 17 . . . . . 6 (𝑅𝑉 → (ldgIdlSeq‘𝑅) = (𝑖𝑈 ↦ (𝑥 ∈ ℕ0 ↦ {𝑗 ∣ ∃𝑘𝑖 ((𝐷𝑘) ≤ 𝑥𝑗 = ((coe1𝑘)‘𝑥))})))
221, 21syl5eq 2868 . . . . 5 (𝑅𝑉𝑆 = (𝑖𝑈 ↦ (𝑥 ∈ ℕ0 ↦ {𝑗 ∣ ∃𝑘𝑖 ((𝐷𝑘) ≤ 𝑥𝑗 = ((coe1𝑘)‘𝑥))})))
2322fveq1d 6672 . . . 4 (𝑅𝑉 → (𝑆𝐼) = ((𝑖𝑈 ↦ (𝑥 ∈ ℕ0 ↦ {𝑗 ∣ ∃𝑘𝑖 ((𝐷𝑘) ≤ 𝑥𝑗 = ((coe1𝑘)‘𝑥))}))‘𝐼))
2423fveq1d 6672 . . 3 (𝑅𝑉 → ((𝑆𝐼)‘𝑋) = (((𝑖𝑈 ↦ (𝑥 ∈ ℕ0 ↦ {𝑗 ∣ ∃𝑘𝑖 ((𝐷𝑘) ≤ 𝑥𝑗 = ((coe1𝑘)‘𝑥))}))‘𝐼)‘𝑋))
25243ad2ant1 1129 . 2 ((𝑅𝑉𝐼𝑈𝑋 ∈ ℕ0) → ((𝑆𝐼)‘𝑋) = (((𝑖𝑈 ↦ (𝑥 ∈ ℕ0 ↦ {𝑗 ∣ ∃𝑘𝑖 ((𝐷𝑘) ≤ 𝑥𝑗 = ((coe1𝑘)‘𝑥))}))‘𝐼)‘𝑋))
26 rexeq 3406 . . . . . . 7 (𝑖 = 𝐼 → (∃𝑘𝑖 ((𝐷𝑘) ≤ 𝑥𝑗 = ((coe1𝑘)‘𝑥)) ↔ ∃𝑘𝐼 ((𝐷𝑘) ≤ 𝑥𝑗 = ((coe1𝑘)‘𝑥))))
2726abbidv 2885 . . . . . 6 (𝑖 = 𝐼 → {𝑗 ∣ ∃𝑘𝑖 ((𝐷𝑘) ≤ 𝑥𝑗 = ((coe1𝑘)‘𝑥))} = {𝑗 ∣ ∃𝑘𝐼 ((𝐷𝑘) ≤ 𝑥𝑗 = ((coe1𝑘)‘𝑥))})
2827mpteq2dv 5162 . . . . 5 (𝑖 = 𝐼 → (𝑥 ∈ ℕ0 ↦ {𝑗 ∣ ∃𝑘𝑖 ((𝐷𝑘) ≤ 𝑥𝑗 = ((coe1𝑘)‘𝑥))}) = (𝑥 ∈ ℕ0 ↦ {𝑗 ∣ ∃𝑘𝐼 ((𝐷𝑘) ≤ 𝑥𝑗 = ((coe1𝑘)‘𝑥))}))
29 eqid 2821 . . . . 5 (𝑖𝑈 ↦ (𝑥 ∈ ℕ0 ↦ {𝑗 ∣ ∃𝑘𝑖 ((𝐷𝑘) ≤ 𝑥𝑗 = ((coe1𝑘)‘𝑥))})) = (𝑖𝑈 ↦ (𝑥 ∈ ℕ0 ↦ {𝑗 ∣ ∃𝑘𝑖 ((𝐷𝑘) ≤ 𝑥𝑗 = ((coe1𝑘)‘𝑥))}))
30 nn0ex 11904 . . . . . 6 0 ∈ V
3130mptex 6986 . . . . 5 (𝑥 ∈ ℕ0 ↦ {𝑗 ∣ ∃𝑘𝐼 ((𝐷𝑘) ≤ 𝑥𝑗 = ((coe1𝑘)‘𝑥))}) ∈ V
3228, 29, 31fvmpt 6768 . . . 4 (𝐼𝑈 → ((𝑖𝑈 ↦ (𝑥 ∈ ℕ0 ↦ {𝑗 ∣ ∃𝑘𝑖 ((𝐷𝑘) ≤ 𝑥𝑗 = ((coe1𝑘)‘𝑥))}))‘𝐼) = (𝑥 ∈ ℕ0 ↦ {𝑗 ∣ ∃𝑘𝐼 ((𝐷𝑘) ≤ 𝑥𝑗 = ((coe1𝑘)‘𝑥))}))
3332fveq1d 6672 . . 3 (𝐼𝑈 → (((𝑖𝑈 ↦ (𝑥 ∈ ℕ0 ↦ {𝑗 ∣ ∃𝑘𝑖 ((𝐷𝑘) ≤ 𝑥𝑗 = ((coe1𝑘)‘𝑥))}))‘𝐼)‘𝑋) = ((𝑥 ∈ ℕ0 ↦ {𝑗 ∣ ∃𝑘𝐼 ((𝐷𝑘) ≤ 𝑥𝑗 = ((coe1𝑘)‘𝑥))})‘𝑋))
34333ad2ant2 1130 . 2 ((𝑅𝑉𝐼𝑈𝑋 ∈ ℕ0) → (((𝑖𝑈 ↦ (𝑥 ∈ ℕ0 ↦ {𝑗 ∣ ∃𝑘𝑖 ((𝐷𝑘) ≤ 𝑥𝑗 = ((coe1𝑘)‘𝑥))}))‘𝐼)‘𝑋) = ((𝑥 ∈ ℕ0 ↦ {𝑗 ∣ ∃𝑘𝐼 ((𝐷𝑘) ≤ 𝑥𝑗 = ((coe1𝑘)‘𝑥))})‘𝑋))
35 eqid 2821 . . 3 (𝑥 ∈ ℕ0 ↦ {𝑗 ∣ ∃𝑘𝐼 ((𝐷𝑘) ≤ 𝑥𝑗 = ((coe1𝑘)‘𝑥))}) = (𝑥 ∈ ℕ0 ↦ {𝑗 ∣ ∃𝑘𝐼 ((𝐷𝑘) ≤ 𝑥𝑗 = ((coe1𝑘)‘𝑥))})
36 breq2 5070 . . . . . 6 (𝑥 = 𝑋 → ((𝐷𝑘) ≤ 𝑥 ↔ (𝐷𝑘) ≤ 𝑋))
37 fveq2 6670 . . . . . . 7 (𝑥 = 𝑋 → ((coe1𝑘)‘𝑥) = ((coe1𝑘)‘𝑋))
3837eqeq2d 2832 . . . . . 6 (𝑥 = 𝑋 → (𝑗 = ((coe1𝑘)‘𝑥) ↔ 𝑗 = ((coe1𝑘)‘𝑋)))
3936, 38anbi12d 632 . . . . 5 (𝑥 = 𝑋 → (((𝐷𝑘) ≤ 𝑥𝑗 = ((coe1𝑘)‘𝑥)) ↔ ((𝐷𝑘) ≤ 𝑋𝑗 = ((coe1𝑘)‘𝑋))))
4039rexbidv 3297 . . . 4 (𝑥 = 𝑋 → (∃𝑘𝐼 ((𝐷𝑘) ≤ 𝑥𝑗 = ((coe1𝑘)‘𝑥)) ↔ ∃𝑘𝐼 ((𝐷𝑘) ≤ 𝑋𝑗 = ((coe1𝑘)‘𝑋))))
4140abbidv 2885 . . 3 (𝑥 = 𝑋 → {𝑗 ∣ ∃𝑘𝐼 ((𝐷𝑘) ≤ 𝑥𝑗 = ((coe1𝑘)‘𝑥))} = {𝑗 ∣ ∃𝑘𝐼 ((𝐷𝑘) ≤ 𝑋𝑗 = ((coe1𝑘)‘𝑋))})
42 simp3 1134 . . 3 ((𝑅𝑉𝐼𝑈𝑋 ∈ ℕ0) → 𝑋 ∈ ℕ0)
43 simpr 487 . . . . . 6 (((𝐷𝑘) ≤ 𝑋𝑗 = ((coe1𝑘)‘𝑋)) → 𝑗 = ((coe1𝑘)‘𝑋))
4443reximi 3243 . . . . 5 (∃𝑘𝐼 ((𝐷𝑘) ≤ 𝑋𝑗 = ((coe1𝑘)‘𝑋)) → ∃𝑘𝐼 𝑗 = ((coe1𝑘)‘𝑋))
4544ss2abi 4043 . . . 4 {𝑗 ∣ ∃𝑘𝐼 ((𝐷𝑘) ≤ 𝑋𝑗 = ((coe1𝑘)‘𝑋))} ⊆ {𝑗 ∣ ∃𝑘𝐼 𝑗 = ((coe1𝑘)‘𝑋)}
46 abrexexg 7662 . . . . 5 (𝐼𝑈 → {𝑗 ∣ ∃𝑘𝐼 𝑗 = ((coe1𝑘)‘𝑋)} ∈ V)
47463ad2ant2 1130 . . . 4 ((𝑅𝑉𝐼𝑈𝑋 ∈ ℕ0) → {𝑗 ∣ ∃𝑘𝐼 𝑗 = ((coe1𝑘)‘𝑋)} ∈ V)
48 ssexg 5227 . . . 4 (({𝑗 ∣ ∃𝑘𝐼 ((𝐷𝑘) ≤ 𝑋𝑗 = ((coe1𝑘)‘𝑋))} ⊆ {𝑗 ∣ ∃𝑘𝐼 𝑗 = ((coe1𝑘)‘𝑋)} ∧ {𝑗 ∣ ∃𝑘𝐼 𝑗 = ((coe1𝑘)‘𝑋)} ∈ V) → {𝑗 ∣ ∃𝑘𝐼 ((𝐷𝑘) ≤ 𝑋𝑗 = ((coe1𝑘)‘𝑋))} ∈ V)
4945, 47, 48sylancr 589 . . 3 ((𝑅𝑉𝐼𝑈𝑋 ∈ ℕ0) → {𝑗 ∣ ∃𝑘𝐼 ((𝐷𝑘) ≤ 𝑋𝑗 = ((coe1𝑘)‘𝑋))} ∈ V)
5035, 41, 42, 49fvmptd3 6791 . 2 ((𝑅𝑉𝐼𝑈𝑋 ∈ ℕ0) → ((𝑥 ∈ ℕ0 ↦ {𝑗 ∣ ∃𝑘𝐼 ((𝐷𝑘) ≤ 𝑥𝑗 = ((coe1𝑘)‘𝑥))})‘𝑋) = {𝑗 ∣ ∃𝑘𝐼 ((𝐷𝑘) ≤ 𝑋𝑗 = ((coe1𝑘)‘𝑋))})
5125, 34, 503eqtrd 2860 1 ((𝑅𝑉𝐼𝑈𝑋 ∈ ℕ0) → ((𝑆𝐼)‘𝑋) = {𝑗 ∣ ∃𝑘𝐼 ((𝐷𝑘) ≤ 𝑋𝑗 = ((coe1𝑘)‘𝑋))})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398  w3a 1083   = wceq 1537  wcel 2114  {cab 2799  wrex 3139  Vcvv 3494  wss 3936   class class class wbr 5066  cmpt 5146  cfv 6355  cle 10676  0cn0 11898  LIdealclidl 19942  Poly1cpl1 20345  coe1cco1 20346   deg1 cdg1 24648  ldgIdlSeqcldgis 39741
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2793  ax-rep 5190  ax-sep 5203  ax-nul 5210  ax-pow 5266  ax-pr 5330  ax-un 7461  ax-cnex 10593  ax-1cn 10595  ax-addcl 10597
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-ral 3143  df-rex 3144  df-reu 3145  df-rab 3147  df-v 3496  df-sbc 3773  df-csb 3884  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-pss 3954  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4568  df-pr 4570  df-tp 4572  df-op 4574  df-uni 4839  df-iun 4921  df-br 5067  df-opab 5129  df-mpt 5147  df-tr 5173  df-id 5460  df-eprel 5465  df-po 5474  df-so 5475  df-fr 5514  df-we 5516  df-xp 5561  df-rel 5562  df-cnv 5563  df-co 5564  df-dm 5565  df-rn 5566  df-res 5567  df-ima 5568  df-pred 6148  df-ord 6194  df-on 6195  df-lim 6196  df-suc 6197  df-iota 6314  df-fun 6357  df-fn 6358  df-f 6359  df-f1 6360  df-fo 6361  df-f1o 6362  df-fv 6363  df-ov 7159  df-om 7581  df-wrecs 7947  df-recs 8008  df-rdg 8046  df-nn 11639  df-n0 11899  df-ldgis 39742
This theorem is referenced by:  hbtlem2  39744  hbtlem4  39746  hbtlem3  39747  hbtlem5  39748  hbtlem6  39749
  Copyright terms: Public domain W3C validator