![]() |
Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > HSE Home > Th. List > hlim2 | Structured version Visualization version GIF version |
Description: The limit of a sequence on a Hilbert space. (Contributed by NM, 16-Aug-1999.) (Revised by Mario Carneiro, 14-May-2014.) (New usage is discouraged.) |
Ref | Expression |
---|---|
hlim2 | ⊢ ((𝐹:ℕ⟶ ℋ ∧ 𝐴 ∈ ℋ) → (𝐹 ⇝𝑣 𝐴 ↔ ∀𝑥 ∈ ℝ+ ∃𝑦 ∈ ℕ ∀𝑧 ∈ (ℤ≥‘𝑦)(normℎ‘((𝐹‘𝑧) −ℎ 𝐴)) < 𝑥)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | breq2 4808 | . . . . 5 ⊢ (𝑤 = 𝐴 → (𝐹 ⇝𝑣 𝑤 ↔ 𝐹 ⇝𝑣 𝐴)) | |
2 | oveq2 6821 | . . . . . . . . 9 ⊢ (𝑤 = 𝐴 → ((𝐹‘𝑧) −ℎ 𝑤) = ((𝐹‘𝑧) −ℎ 𝐴)) | |
3 | 2 | fveq2d 6356 | . . . . . . . 8 ⊢ (𝑤 = 𝐴 → (normℎ‘((𝐹‘𝑧) −ℎ 𝑤)) = (normℎ‘((𝐹‘𝑧) −ℎ 𝐴))) |
4 | 3 | breq1d 4814 | . . . . . . 7 ⊢ (𝑤 = 𝐴 → ((normℎ‘((𝐹‘𝑧) −ℎ 𝑤)) < 𝑥 ↔ (normℎ‘((𝐹‘𝑧) −ℎ 𝐴)) < 𝑥)) |
5 | 4 | rexralbidv 3196 | . . . . . 6 ⊢ (𝑤 = 𝐴 → (∃𝑦 ∈ ℕ ∀𝑧 ∈ (ℤ≥‘𝑦)(normℎ‘((𝐹‘𝑧) −ℎ 𝑤)) < 𝑥 ↔ ∃𝑦 ∈ ℕ ∀𝑧 ∈ (ℤ≥‘𝑦)(normℎ‘((𝐹‘𝑧) −ℎ 𝐴)) < 𝑥)) |
6 | 5 | ralbidv 3124 | . . . . 5 ⊢ (𝑤 = 𝐴 → (∀𝑥 ∈ ℝ+ ∃𝑦 ∈ ℕ ∀𝑧 ∈ (ℤ≥‘𝑦)(normℎ‘((𝐹‘𝑧) −ℎ 𝑤)) < 𝑥 ↔ ∀𝑥 ∈ ℝ+ ∃𝑦 ∈ ℕ ∀𝑧 ∈ (ℤ≥‘𝑦)(normℎ‘((𝐹‘𝑧) −ℎ 𝐴)) < 𝑥)) |
7 | 1, 6 | bibi12d 334 | . . . 4 ⊢ (𝑤 = 𝐴 → ((𝐹 ⇝𝑣 𝑤 ↔ ∀𝑥 ∈ ℝ+ ∃𝑦 ∈ ℕ ∀𝑧 ∈ (ℤ≥‘𝑦)(normℎ‘((𝐹‘𝑧) −ℎ 𝑤)) < 𝑥) ↔ (𝐹 ⇝𝑣 𝐴 ↔ ∀𝑥 ∈ ℝ+ ∃𝑦 ∈ ℕ ∀𝑧 ∈ (ℤ≥‘𝑦)(normℎ‘((𝐹‘𝑧) −ℎ 𝐴)) < 𝑥))) |
8 | 7 | imbi2d 329 | . . 3 ⊢ (𝑤 = 𝐴 → ((𝐹:ℕ⟶ ℋ → (𝐹 ⇝𝑣 𝑤 ↔ ∀𝑥 ∈ ℝ+ ∃𝑦 ∈ ℕ ∀𝑧 ∈ (ℤ≥‘𝑦)(normℎ‘((𝐹‘𝑧) −ℎ 𝑤)) < 𝑥)) ↔ (𝐹:ℕ⟶ ℋ → (𝐹 ⇝𝑣 𝐴 ↔ ∀𝑥 ∈ ℝ+ ∃𝑦 ∈ ℕ ∀𝑧 ∈ (ℤ≥‘𝑦)(normℎ‘((𝐹‘𝑧) −ℎ 𝐴)) < 𝑥)))) |
9 | vex 3343 | . . . . . 6 ⊢ 𝑤 ∈ V | |
10 | 9 | hlimi 28354 | . . . . 5 ⊢ (𝐹 ⇝𝑣 𝑤 ↔ ((𝐹:ℕ⟶ ℋ ∧ 𝑤 ∈ ℋ) ∧ ∀𝑥 ∈ ℝ+ ∃𝑦 ∈ ℕ ∀𝑧 ∈ (ℤ≥‘𝑦)(normℎ‘((𝐹‘𝑧) −ℎ 𝑤)) < 𝑥)) |
11 | 10 | baib 982 | . . . 4 ⊢ ((𝐹:ℕ⟶ ℋ ∧ 𝑤 ∈ ℋ) → (𝐹 ⇝𝑣 𝑤 ↔ ∀𝑥 ∈ ℝ+ ∃𝑦 ∈ ℕ ∀𝑧 ∈ (ℤ≥‘𝑦)(normℎ‘((𝐹‘𝑧) −ℎ 𝑤)) < 𝑥)) |
12 | 11 | expcom 450 | . . 3 ⊢ (𝑤 ∈ ℋ → (𝐹:ℕ⟶ ℋ → (𝐹 ⇝𝑣 𝑤 ↔ ∀𝑥 ∈ ℝ+ ∃𝑦 ∈ ℕ ∀𝑧 ∈ (ℤ≥‘𝑦)(normℎ‘((𝐹‘𝑧) −ℎ 𝑤)) < 𝑥))) |
13 | 8, 12 | vtoclga 3412 | . 2 ⊢ (𝐴 ∈ ℋ → (𝐹:ℕ⟶ ℋ → (𝐹 ⇝𝑣 𝐴 ↔ ∀𝑥 ∈ ℝ+ ∃𝑦 ∈ ℕ ∀𝑧 ∈ (ℤ≥‘𝑦)(normℎ‘((𝐹‘𝑧) −ℎ 𝐴)) < 𝑥))) |
14 | 13 | impcom 445 | 1 ⊢ ((𝐹:ℕ⟶ ℋ ∧ 𝐴 ∈ ℋ) → (𝐹 ⇝𝑣 𝐴 ↔ ∀𝑥 ∈ ℝ+ ∃𝑦 ∈ ℕ ∀𝑧 ∈ (ℤ≥‘𝑦)(normℎ‘((𝐹‘𝑧) −ℎ 𝐴)) < 𝑥)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 196 ∧ wa 383 = wceq 1632 ∈ wcel 2139 ∀wral 3050 ∃wrex 3051 class class class wbr 4804 ⟶wf 6045 ‘cfv 6049 (class class class)co 6813 < clt 10266 ℕcn 11212 ℤ≥cuz 11879 ℝ+crp 12025 ℋchil 28085 normℎcno 28089 −ℎ cmv 28091 ⇝𝑣 chli 28093 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1871 ax-4 1886 ax-5 1988 ax-6 2054 ax-7 2090 ax-8 2141 ax-9 2148 ax-10 2168 ax-11 2183 ax-12 2196 ax-13 2391 ax-ext 2740 ax-rep 4923 ax-sep 4933 ax-nul 4941 ax-pow 4992 ax-pr 5055 ax-un 7114 ax-cnex 10184 ax-resscn 10185 ax-1cn 10186 ax-icn 10187 ax-addcl 10188 ax-addrcl 10189 ax-mulcl 10190 ax-mulrcl 10191 ax-i2m1 10196 ax-1ne0 10197 ax-rrecex 10200 ax-cnre 10201 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3or 1073 df-3an 1074 df-tru 1635 df-ex 1854 df-nf 1859 df-sb 2047 df-eu 2611 df-mo 2612 df-clab 2747 df-cleq 2753 df-clel 2756 df-nfc 2891 df-ne 2933 df-ral 3055 df-rex 3056 df-reu 3057 df-rab 3059 df-v 3342 df-sbc 3577 df-csb 3675 df-dif 3718 df-un 3720 df-in 3722 df-ss 3729 df-pss 3731 df-nul 4059 df-if 4231 df-pw 4304 df-sn 4322 df-pr 4324 df-tp 4326 df-op 4328 df-uni 4589 df-iun 4674 df-br 4805 df-opab 4865 df-mpt 4882 df-tr 4905 df-id 5174 df-eprel 5179 df-po 5187 df-so 5188 df-fr 5225 df-we 5227 df-xp 5272 df-rel 5273 df-cnv 5274 df-co 5275 df-dm 5276 df-rn 5277 df-res 5278 df-ima 5279 df-pred 5841 df-ord 5887 df-on 5888 df-lim 5889 df-suc 5890 df-iota 6012 df-fun 6051 df-fn 6052 df-f 6053 df-f1 6054 df-fo 6055 df-f1o 6056 df-fv 6057 df-ov 6816 df-om 7231 df-wrecs 7576 df-recs 7637 df-rdg 7675 df-nn 11213 df-hlim 28138 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |