HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  hlim2 Structured version   Visualization version   GIF version

Theorem hlim2 27895
Description: The limit of a sequence on a Hilbert space. (Contributed by NM, 16-Aug-1999.) (Revised by Mario Carneiro, 14-May-2014.) (New usage is discouraged.)
Assertion
Ref Expression
hlim2 ((𝐹:ℕ⟶ ℋ ∧ 𝐴 ∈ ℋ) → (𝐹𝑣 𝐴 ↔ ∀𝑥 ∈ ℝ+𝑦 ∈ ℕ ∀𝑧 ∈ (ℤ𝑦)(norm‘((𝐹𝑧) − 𝐴)) < 𝑥))
Distinct variable groups:   𝑥,𝑦,𝑧,𝐹   𝑥,𝐴,𝑦,𝑧

Proof of Theorem hlim2
Dummy variable 𝑤 is distinct from all other variables.
StepHypRef Expression
1 breq2 4617 . . . . 5 (𝑤 = 𝐴 → (𝐹𝑣 𝑤𝐹𝑣 𝐴))
2 oveq2 6612 . . . . . . . . 9 (𝑤 = 𝐴 → ((𝐹𝑧) − 𝑤) = ((𝐹𝑧) − 𝐴))
32fveq2d 6152 . . . . . . . 8 (𝑤 = 𝐴 → (norm‘((𝐹𝑧) − 𝑤)) = (norm‘((𝐹𝑧) − 𝐴)))
43breq1d 4623 . . . . . . 7 (𝑤 = 𝐴 → ((norm‘((𝐹𝑧) − 𝑤)) < 𝑥 ↔ (norm‘((𝐹𝑧) − 𝐴)) < 𝑥))
54rexralbidv 3051 . . . . . 6 (𝑤 = 𝐴 → (∃𝑦 ∈ ℕ ∀𝑧 ∈ (ℤ𝑦)(norm‘((𝐹𝑧) − 𝑤)) < 𝑥 ↔ ∃𝑦 ∈ ℕ ∀𝑧 ∈ (ℤ𝑦)(norm‘((𝐹𝑧) − 𝐴)) < 𝑥))
65ralbidv 2980 . . . . 5 (𝑤 = 𝐴 → (∀𝑥 ∈ ℝ+𝑦 ∈ ℕ ∀𝑧 ∈ (ℤ𝑦)(norm‘((𝐹𝑧) − 𝑤)) < 𝑥 ↔ ∀𝑥 ∈ ℝ+𝑦 ∈ ℕ ∀𝑧 ∈ (ℤ𝑦)(norm‘((𝐹𝑧) − 𝐴)) < 𝑥))
71, 6bibi12d 335 . . . 4 (𝑤 = 𝐴 → ((𝐹𝑣 𝑤 ↔ ∀𝑥 ∈ ℝ+𝑦 ∈ ℕ ∀𝑧 ∈ (ℤ𝑦)(norm‘((𝐹𝑧) − 𝑤)) < 𝑥) ↔ (𝐹𝑣 𝐴 ↔ ∀𝑥 ∈ ℝ+𝑦 ∈ ℕ ∀𝑧 ∈ (ℤ𝑦)(norm‘((𝐹𝑧) − 𝐴)) < 𝑥)))
87imbi2d 330 . . 3 (𝑤 = 𝐴 → ((𝐹:ℕ⟶ ℋ → (𝐹𝑣 𝑤 ↔ ∀𝑥 ∈ ℝ+𝑦 ∈ ℕ ∀𝑧 ∈ (ℤ𝑦)(norm‘((𝐹𝑧) − 𝑤)) < 𝑥)) ↔ (𝐹:ℕ⟶ ℋ → (𝐹𝑣 𝐴 ↔ ∀𝑥 ∈ ℝ+𝑦 ∈ ℕ ∀𝑧 ∈ (ℤ𝑦)(norm‘((𝐹𝑧) − 𝐴)) < 𝑥))))
9 vex 3189 . . . . . 6 𝑤 ∈ V
109hlimi 27891 . . . . 5 (𝐹𝑣 𝑤 ↔ ((𝐹:ℕ⟶ ℋ ∧ 𝑤 ∈ ℋ) ∧ ∀𝑥 ∈ ℝ+𝑦 ∈ ℕ ∀𝑧 ∈ (ℤ𝑦)(norm‘((𝐹𝑧) − 𝑤)) < 𝑥))
1110baib 943 . . . 4 ((𝐹:ℕ⟶ ℋ ∧ 𝑤 ∈ ℋ) → (𝐹𝑣 𝑤 ↔ ∀𝑥 ∈ ℝ+𝑦 ∈ ℕ ∀𝑧 ∈ (ℤ𝑦)(norm‘((𝐹𝑧) − 𝑤)) < 𝑥))
1211expcom 451 . . 3 (𝑤 ∈ ℋ → (𝐹:ℕ⟶ ℋ → (𝐹𝑣 𝑤 ↔ ∀𝑥 ∈ ℝ+𝑦 ∈ ℕ ∀𝑧 ∈ (ℤ𝑦)(norm‘((𝐹𝑧) − 𝑤)) < 𝑥)))
138, 12vtoclga 3258 . 2 (𝐴 ∈ ℋ → (𝐹:ℕ⟶ ℋ → (𝐹𝑣 𝐴 ↔ ∀𝑥 ∈ ℝ+𝑦 ∈ ℕ ∀𝑧 ∈ (ℤ𝑦)(norm‘((𝐹𝑧) − 𝐴)) < 𝑥)))
1413impcom 446 1 ((𝐹:ℕ⟶ ℋ ∧ 𝐴 ∈ ℋ) → (𝐹𝑣 𝐴 ↔ ∀𝑥 ∈ ℝ+𝑦 ∈ ℕ ∀𝑧 ∈ (ℤ𝑦)(norm‘((𝐹𝑧) − 𝐴)) < 𝑥))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 384   = wceq 1480  wcel 1987  wral 2907  wrex 2908   class class class wbr 4613  wf 5843  cfv 5847  (class class class)co 6604   < clt 10018  cn 10964  cuz 11631  +crp 11776  chil 27622  normcno 27626   cmv 27628  𝑣 chli 27630
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-rep 4731  ax-sep 4741  ax-nul 4749  ax-pow 4803  ax-pr 4867  ax-un 6902  ax-cnex 9936  ax-resscn 9937  ax-1cn 9938  ax-icn 9939  ax-addcl 9940  ax-addrcl 9941  ax-mulcl 9942  ax-mulrcl 9943  ax-i2m1 9948  ax-1ne0 9949  ax-rrecex 9952  ax-cnre 9953
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-ral 2912  df-rex 2913  df-reu 2914  df-rab 2916  df-v 3188  df-sbc 3418  df-csb 3515  df-dif 3558  df-un 3560  df-in 3562  df-ss 3569  df-pss 3571  df-nul 3892  df-if 4059  df-pw 4132  df-sn 4149  df-pr 4151  df-tp 4153  df-op 4155  df-uni 4403  df-iun 4487  df-br 4614  df-opab 4674  df-mpt 4675  df-tr 4713  df-eprel 4985  df-id 4989  df-po 4995  df-so 4996  df-fr 5033  df-we 5035  df-xp 5080  df-rel 5081  df-cnv 5082  df-co 5083  df-dm 5084  df-rn 5085  df-res 5086  df-ima 5087  df-pred 5639  df-ord 5685  df-on 5686  df-lim 5687  df-suc 5688  df-iota 5810  df-fun 5849  df-fn 5850  df-f 5851  df-f1 5852  df-fo 5853  df-f1o 5854  df-fv 5855  df-ov 6607  df-om 7013  df-wrecs 7352  df-recs 7413  df-rdg 7451  df-nn 10965  df-hlim 27675
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator