HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  imaelshi Structured version   Visualization version   GIF version

Theorem imaelshi 28763
Description: The image of a subspace under a linear operator is a subspace. (Contributed by Mario Carneiro, 19-May-2014.) (New usage is discouraged.)
Hypotheses
Ref Expression
rnelsh.1 𝑇 ∈ LinOp
imaelsh.2 𝐴S
Assertion
Ref Expression
imaelshi (𝑇𝐴) ∈ S

Proof of Theorem imaelshi
Dummy variables 𝑣 𝑢 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 imassrn 5436 . . . 4 (𝑇𝐴) ⊆ ran 𝑇
2 rnelsh.1 . . . . . 6 𝑇 ∈ LinOp
32lnopfi 28674 . . . . 5 𝑇: ℋ⟶ ℋ
4 frn 6010 . . . . 5 (𝑇: ℋ⟶ ℋ → ran 𝑇 ⊆ ℋ)
53, 4ax-mp 5 . . . 4 ran 𝑇 ⊆ ℋ
61, 5sstri 3592 . . 3 (𝑇𝐴) ⊆ ℋ
72lnop0i 28675 . . . 4 (𝑇‘0) = 0
8 imaelsh.2 . . . . . 6 𝐴S
9 sh0 27919 . . . . . 6 (𝐴S → 0𝐴)
108, 9ax-mp 5 . . . . 5 0𝐴
11 ffun 6005 . . . . . . 7 (𝑇: ℋ⟶ ℋ → Fun 𝑇)
123, 11ax-mp 5 . . . . . 6 Fun 𝑇
138shssii 27916 . . . . . . 7 𝐴 ⊆ ℋ
143fdmi 6009 . . . . . . 7 dom 𝑇 = ℋ
1513, 14sseqtr4i 3617 . . . . . 6 𝐴 ⊆ dom 𝑇
16 funfvima2 6447 . . . . . 6 ((Fun 𝑇𝐴 ⊆ dom 𝑇) → (0𝐴 → (𝑇‘0) ∈ (𝑇𝐴)))
1712, 15, 16mp2an 707 . . . . 5 (0𝐴 → (𝑇‘0) ∈ (𝑇𝐴))
1810, 17ax-mp 5 . . . 4 (𝑇‘0) ∈ (𝑇𝐴)
197, 18eqeltrri 2695 . . 3 0 ∈ (𝑇𝐴)
206, 19pm3.2i 471 . 2 ((𝑇𝐴) ⊆ ℋ ∧ 0 ∈ (𝑇𝐴))
21 ffn 6002 . . . . . 6 (𝑇: ℋ⟶ ℋ → 𝑇 Fn ℋ)
223, 21ax-mp 5 . . . . 5 𝑇 Fn ℋ
23 oveq1 6611 . . . . . . . 8 (𝑢 = (𝑇𝑥) → (𝑢 + 𝑣) = ((𝑇𝑥) + 𝑣))
2423eleq1d 2683 . . . . . . 7 (𝑢 = (𝑇𝑥) → ((𝑢 + 𝑣) ∈ (𝑇𝐴) ↔ ((𝑇𝑥) + 𝑣) ∈ (𝑇𝐴)))
2524ralbidv 2980 . . . . . 6 (𝑢 = (𝑇𝑥) → (∀𝑣 ∈ (𝑇𝐴)(𝑢 + 𝑣) ∈ (𝑇𝐴) ↔ ∀𝑣 ∈ (𝑇𝐴)((𝑇𝑥) + 𝑣) ∈ (𝑇𝐴)))
2625ralima 6452 . . . . 5 ((𝑇 Fn ℋ ∧ 𝐴 ⊆ ℋ) → (∀𝑢 ∈ (𝑇𝐴)∀𝑣 ∈ (𝑇𝐴)(𝑢 + 𝑣) ∈ (𝑇𝐴) ↔ ∀𝑥𝐴𝑣 ∈ (𝑇𝐴)((𝑇𝑥) + 𝑣) ∈ (𝑇𝐴)))
2722, 13, 26mp2an 707 . . . 4 (∀𝑢 ∈ (𝑇𝐴)∀𝑣 ∈ (𝑇𝐴)(𝑢 + 𝑣) ∈ (𝑇𝐴) ↔ ∀𝑥𝐴𝑣 ∈ (𝑇𝐴)((𝑇𝑥) + 𝑣) ∈ (𝑇𝐴))
288sheli 27917 . . . . . . . 8 (𝑥𝐴𝑥 ∈ ℋ)
298sheli 27917 . . . . . . . 8 (𝑦𝐴𝑦 ∈ ℋ)
302lnopaddi 28676 . . . . . . . 8 ((𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ) → (𝑇‘(𝑥 + 𝑦)) = ((𝑇𝑥) + (𝑇𝑦)))
3128, 29, 30syl2an 494 . . . . . . 7 ((𝑥𝐴𝑦𝐴) → (𝑇‘(𝑥 + 𝑦)) = ((𝑇𝑥) + (𝑇𝑦)))
32 shaddcl 27920 . . . . . . . . 9 ((𝐴S𝑥𝐴𝑦𝐴) → (𝑥 + 𝑦) ∈ 𝐴)
338, 32mp3an1 1408 . . . . . . . 8 ((𝑥𝐴𝑦𝐴) → (𝑥 + 𝑦) ∈ 𝐴)
34 funfvima2 6447 . . . . . . . . 9 ((Fun 𝑇𝐴 ⊆ dom 𝑇) → ((𝑥 + 𝑦) ∈ 𝐴 → (𝑇‘(𝑥 + 𝑦)) ∈ (𝑇𝐴)))
3512, 15, 34mp2an 707 . . . . . . . 8 ((𝑥 + 𝑦) ∈ 𝐴 → (𝑇‘(𝑥 + 𝑦)) ∈ (𝑇𝐴))
3633, 35syl 17 . . . . . . 7 ((𝑥𝐴𝑦𝐴) → (𝑇‘(𝑥 + 𝑦)) ∈ (𝑇𝐴))
3731, 36eqeltrrd 2699 . . . . . 6 ((𝑥𝐴𝑦𝐴) → ((𝑇𝑥) + (𝑇𝑦)) ∈ (𝑇𝐴))
3837ralrimiva 2960 . . . . 5 (𝑥𝐴 → ∀𝑦𝐴 ((𝑇𝑥) + (𝑇𝑦)) ∈ (𝑇𝐴))
39 oveq2 6612 . . . . . . . 8 (𝑣 = (𝑇𝑦) → ((𝑇𝑥) + 𝑣) = ((𝑇𝑥) + (𝑇𝑦)))
4039eleq1d 2683 . . . . . . 7 (𝑣 = (𝑇𝑦) → (((𝑇𝑥) + 𝑣) ∈ (𝑇𝐴) ↔ ((𝑇𝑥) + (𝑇𝑦)) ∈ (𝑇𝐴)))
4140ralima 6452 . . . . . 6 ((𝑇 Fn ℋ ∧ 𝐴 ⊆ ℋ) → (∀𝑣 ∈ (𝑇𝐴)((𝑇𝑥) + 𝑣) ∈ (𝑇𝐴) ↔ ∀𝑦𝐴 ((𝑇𝑥) + (𝑇𝑦)) ∈ (𝑇𝐴)))
4222, 13, 41mp2an 707 . . . . 5 (∀𝑣 ∈ (𝑇𝐴)((𝑇𝑥) + 𝑣) ∈ (𝑇𝐴) ↔ ∀𝑦𝐴 ((𝑇𝑥) + (𝑇𝑦)) ∈ (𝑇𝐴))
4338, 42sylibr 224 . . . 4 (𝑥𝐴 → ∀𝑣 ∈ (𝑇𝐴)((𝑇𝑥) + 𝑣) ∈ (𝑇𝐴))
4427, 43mprgbir 2922 . . 3 𝑢 ∈ (𝑇𝐴)∀𝑣 ∈ (𝑇𝐴)(𝑢 + 𝑣) ∈ (𝑇𝐴)
452lnopmuli 28677 . . . . . . . 8 ((𝑢 ∈ ℂ ∧ 𝑦 ∈ ℋ) → (𝑇‘(𝑢 · 𝑦)) = (𝑢 · (𝑇𝑦)))
4629, 45sylan2 491 . . . . . . 7 ((𝑢 ∈ ℂ ∧ 𝑦𝐴) → (𝑇‘(𝑢 · 𝑦)) = (𝑢 · (𝑇𝑦)))
47 shmulcl 27921 . . . . . . . . 9 ((𝐴S𝑢 ∈ ℂ ∧ 𝑦𝐴) → (𝑢 · 𝑦) ∈ 𝐴)
488, 47mp3an1 1408 . . . . . . . 8 ((𝑢 ∈ ℂ ∧ 𝑦𝐴) → (𝑢 · 𝑦) ∈ 𝐴)
49 funfvima2 6447 . . . . . . . . 9 ((Fun 𝑇𝐴 ⊆ dom 𝑇) → ((𝑢 · 𝑦) ∈ 𝐴 → (𝑇‘(𝑢 · 𝑦)) ∈ (𝑇𝐴)))
5012, 15, 49mp2an 707 . . . . . . . 8 ((𝑢 · 𝑦) ∈ 𝐴 → (𝑇‘(𝑢 · 𝑦)) ∈ (𝑇𝐴))
5148, 50syl 17 . . . . . . 7 ((𝑢 ∈ ℂ ∧ 𝑦𝐴) → (𝑇‘(𝑢 · 𝑦)) ∈ (𝑇𝐴))
5246, 51eqeltrrd 2699 . . . . . 6 ((𝑢 ∈ ℂ ∧ 𝑦𝐴) → (𝑢 · (𝑇𝑦)) ∈ (𝑇𝐴))
5352ralrimiva 2960 . . . . 5 (𝑢 ∈ ℂ → ∀𝑦𝐴 (𝑢 · (𝑇𝑦)) ∈ (𝑇𝐴))
54 oveq2 6612 . . . . . . . 8 (𝑣 = (𝑇𝑦) → (𝑢 · 𝑣) = (𝑢 · (𝑇𝑦)))
5554eleq1d 2683 . . . . . . 7 (𝑣 = (𝑇𝑦) → ((𝑢 · 𝑣) ∈ (𝑇𝐴) ↔ (𝑢 · (𝑇𝑦)) ∈ (𝑇𝐴)))
5655ralima 6452 . . . . . 6 ((𝑇 Fn ℋ ∧ 𝐴 ⊆ ℋ) → (∀𝑣 ∈ (𝑇𝐴)(𝑢 · 𝑣) ∈ (𝑇𝐴) ↔ ∀𝑦𝐴 (𝑢 · (𝑇𝑦)) ∈ (𝑇𝐴)))
5722, 13, 56mp2an 707 . . . . 5 (∀𝑣 ∈ (𝑇𝐴)(𝑢 · 𝑣) ∈ (𝑇𝐴) ↔ ∀𝑦𝐴 (𝑢 · (𝑇𝑦)) ∈ (𝑇𝐴))
5853, 57sylibr 224 . . . 4 (𝑢 ∈ ℂ → ∀𝑣 ∈ (𝑇𝐴)(𝑢 · 𝑣) ∈ (𝑇𝐴))
5958rgen 2917 . . 3 𝑢 ∈ ℂ ∀𝑣 ∈ (𝑇𝐴)(𝑢 · 𝑣) ∈ (𝑇𝐴)
6044, 59pm3.2i 471 . 2 (∀𝑢 ∈ (𝑇𝐴)∀𝑣 ∈ (𝑇𝐴)(𝑢 + 𝑣) ∈ (𝑇𝐴) ∧ ∀𝑢 ∈ ℂ ∀𝑣 ∈ (𝑇𝐴)(𝑢 · 𝑣) ∈ (𝑇𝐴))
61 issh2 27912 . 2 ((𝑇𝐴) ∈ S ↔ (((𝑇𝐴) ⊆ ℋ ∧ 0 ∈ (𝑇𝐴)) ∧ (∀𝑢 ∈ (𝑇𝐴)∀𝑣 ∈ (𝑇𝐴)(𝑢 + 𝑣) ∈ (𝑇𝐴) ∧ ∀𝑢 ∈ ℂ ∀𝑣 ∈ (𝑇𝐴)(𝑢 · 𝑣) ∈ (𝑇𝐴))))
6220, 60, 61mpbir2an 954 1 (𝑇𝐴) ∈ S
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 384   = wceq 1480  wcel 1987  wral 2907  wss 3555  dom cdm 5074  ran crn 5075  cima 5077  Fun wfun 5841   Fn wfn 5842  wf 5843  cfv 5847  (class class class)co 6604  cc 9878  chil 27622   + cva 27623   · csm 27624  0c0v 27627   S csh 27631  LinOpclo 27650
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-sep 4741  ax-nul 4749  ax-pow 4803  ax-pr 4867  ax-un 6902  ax-resscn 9937  ax-1cn 9938  ax-icn 9939  ax-addcl 9940  ax-addrcl 9941  ax-mulcl 9942  ax-mulrcl 9943  ax-mulcom 9944  ax-addass 9945  ax-mulass 9946  ax-distr 9947  ax-i2m1 9948  ax-1ne0 9949  ax-1rid 9950  ax-rnegex 9951  ax-rrecex 9952  ax-cnre 9953  ax-pre-lttri 9954  ax-pre-lttrn 9955  ax-pre-ltadd 9956  ax-hilex 27702  ax-hfvadd 27703  ax-hvass 27705  ax-hv0cl 27706  ax-hvaddid 27707  ax-hfvmul 27708  ax-hvmulid 27709  ax-hvdistr2 27712  ax-hvmul0 27713
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-nel 2894  df-ral 2912  df-rex 2913  df-reu 2914  df-rab 2916  df-v 3188  df-sbc 3418  df-csb 3515  df-dif 3558  df-un 3560  df-in 3562  df-ss 3569  df-nul 3892  df-if 4059  df-pw 4132  df-sn 4149  df-pr 4151  df-op 4155  df-uni 4403  df-iun 4487  df-br 4614  df-opab 4674  df-mpt 4675  df-id 4989  df-po 4995  df-so 4996  df-xp 5080  df-rel 5081  df-cnv 5082  df-co 5083  df-dm 5084  df-rn 5085  df-res 5086  df-ima 5087  df-iota 5810  df-fun 5849  df-fn 5850  df-f 5851  df-f1 5852  df-fo 5853  df-f1o 5854  df-fv 5855  df-riota 6565  df-ov 6607  df-oprab 6608  df-mpt2 6609  df-er 7687  df-map 7804  df-en 7900  df-dom 7901  df-sdom 7902  df-pnf 10020  df-mnf 10021  df-ltxr 10023  df-sub 10212  df-neg 10213  df-hvsub 27674  df-sh 27910  df-lnop 28546
This theorem is referenced by:  rnelshi  28764
  Copyright terms: Public domain W3C validator