MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  irredmul Structured version   Visualization version   GIF version

Theorem irredmul 19459
Description: If product of two elements is irreducible, then one of the elements must be a unit. (Contributed by Mario Carneiro, 4-Dec-2014.)
Hypotheses
Ref Expression
irredn0.i 𝐼 = (Irred‘𝑅)
irredmul.b 𝐵 = (Base‘𝑅)
irredmul.u 𝑈 = (Unit‘𝑅)
irredmul.t · = (.r𝑅)
Assertion
Ref Expression
irredmul ((𝑋𝐵𝑌𝐵 ∧ (𝑋 · 𝑌) ∈ 𝐼) → (𝑋𝑈𝑌𝑈))

Proof of Theorem irredmul
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 irredmul.b . . . . 5 𝐵 = (Base‘𝑅)
2 irredmul.u . . . . 5 𝑈 = (Unit‘𝑅)
3 irredn0.i . . . . 5 𝐼 = (Irred‘𝑅)
4 irredmul.t . . . . 5 · = (.r𝑅)
51, 2, 3, 4isirred2 19451 . . . 4 ((𝑋 · 𝑌) ∈ 𝐼 ↔ ((𝑋 · 𝑌) ∈ 𝐵 ∧ ¬ (𝑋 · 𝑌) ∈ 𝑈 ∧ ∀𝑥𝐵𝑦𝐵 ((𝑥 · 𝑦) = (𝑋 · 𝑌) → (𝑥𝑈𝑦𝑈))))
65simp3bi 1143 . . 3 ((𝑋 · 𝑌) ∈ 𝐼 → ∀𝑥𝐵𝑦𝐵 ((𝑥 · 𝑦) = (𝑋 · 𝑌) → (𝑥𝑈𝑦𝑈)))
7 eqid 2821 . . . 4 (𝑋 · 𝑌) = (𝑋 · 𝑌)
8 oveq1 7163 . . . . . . 7 (𝑥 = 𝑋 → (𝑥 · 𝑦) = (𝑋 · 𝑦))
98eqeq1d 2823 . . . . . 6 (𝑥 = 𝑋 → ((𝑥 · 𝑦) = (𝑋 · 𝑌) ↔ (𝑋 · 𝑦) = (𝑋 · 𝑌)))
10 eleq1 2900 . . . . . . 7 (𝑥 = 𝑋 → (𝑥𝑈𝑋𝑈))
1110orbi1d 913 . . . . . 6 (𝑥 = 𝑋 → ((𝑥𝑈𝑦𝑈) ↔ (𝑋𝑈𝑦𝑈)))
129, 11imbi12d 347 . . . . 5 (𝑥 = 𝑋 → (((𝑥 · 𝑦) = (𝑋 · 𝑌) → (𝑥𝑈𝑦𝑈)) ↔ ((𝑋 · 𝑦) = (𝑋 · 𝑌) → (𝑋𝑈𝑦𝑈))))
13 oveq2 7164 . . . . . . 7 (𝑦 = 𝑌 → (𝑋 · 𝑦) = (𝑋 · 𝑌))
1413eqeq1d 2823 . . . . . 6 (𝑦 = 𝑌 → ((𝑋 · 𝑦) = (𝑋 · 𝑌) ↔ (𝑋 · 𝑌) = (𝑋 · 𝑌)))
15 eleq1 2900 . . . . . . 7 (𝑦 = 𝑌 → (𝑦𝑈𝑌𝑈))
1615orbi2d 912 . . . . . 6 (𝑦 = 𝑌 → ((𝑋𝑈𝑦𝑈) ↔ (𝑋𝑈𝑌𝑈)))
1714, 16imbi12d 347 . . . . 5 (𝑦 = 𝑌 → (((𝑋 · 𝑦) = (𝑋 · 𝑌) → (𝑋𝑈𝑦𝑈)) ↔ ((𝑋 · 𝑌) = (𝑋 · 𝑌) → (𝑋𝑈𝑌𝑈))))
1812, 17rspc2v 3633 . . . 4 ((𝑋𝐵𝑌𝐵) → (∀𝑥𝐵𝑦𝐵 ((𝑥 · 𝑦) = (𝑋 · 𝑌) → (𝑥𝑈𝑦𝑈)) → ((𝑋 · 𝑌) = (𝑋 · 𝑌) → (𝑋𝑈𝑌𝑈))))
197, 18mpii 46 . . 3 ((𝑋𝐵𝑌𝐵) → (∀𝑥𝐵𝑦𝐵 ((𝑥 · 𝑦) = (𝑋 · 𝑌) → (𝑥𝑈𝑦𝑈)) → (𝑋𝑈𝑌𝑈)))
206, 19syl5 34 . 2 ((𝑋𝐵𝑌𝐵) → ((𝑋 · 𝑌) ∈ 𝐼 → (𝑋𝑈𝑌𝑈)))
21203impia 1113 1 ((𝑋𝐵𝑌𝐵 ∧ (𝑋 · 𝑌) ∈ 𝐼) → (𝑋𝑈𝑌𝑈))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 398  wo 843  w3a 1083   = wceq 1537  wcel 2114  wral 3138  cfv 6355  (class class class)co 7156  Basecbs 16483  .rcmulr 16566  Unitcui 19389  Irredcir 19390
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2793  ax-sep 5203  ax-nul 5210  ax-pow 5266  ax-pr 5330
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-ral 3143  df-rex 3144  df-rab 3147  df-v 3496  df-sbc 3773  df-csb 3884  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-nul 4292  df-if 4468  df-sn 4568  df-pr 4570  df-op 4574  df-uni 4839  df-br 5067  df-opab 5129  df-mpt 5147  df-id 5460  df-xp 5561  df-rel 5562  df-cnv 5563  df-co 5564  df-dm 5565  df-iota 6314  df-fun 6357  df-fv 6363  df-ov 7159  df-irred 19393
This theorem is referenced by:  prmirredlem  20640
  Copyright terms: Public domain W3C validator