Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  prmirredlem Structured version   Visualization version   GIF version

Theorem prmirredlem 19773
 Description: A positive integer is irreducible over ℤ iff it is a prime number. (Contributed by Mario Carneiro, 5-Dec-2014.) (Revised by AV, 10-Jun-2019.)
Hypothesis
Ref Expression
prmirred.i 𝐼 = (Irred‘ℤring)
Assertion
Ref Expression
prmirredlem (𝐴 ∈ ℕ → (𝐴𝐼𝐴 ∈ ℙ))

Proof of Theorem prmirredlem
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 zringring 19753 . . . . . 6 ring ∈ Ring
2 prmirred.i . . . . . . 7 𝐼 = (Irred‘ℤring)
3 zring1 19761 . . . . . . 7 1 = (1r‘ℤring)
42, 3irredn1 18638 . . . . . 6 ((ℤring ∈ Ring ∧ 𝐴𝐼) → 𝐴 ≠ 1)
51, 4mpan 705 . . . . 5 (𝐴𝐼𝐴 ≠ 1)
65anim2i 592 . . . 4 ((𝐴 ∈ ℕ ∧ 𝐴𝐼) → (𝐴 ∈ ℕ ∧ 𝐴 ≠ 1))
7 eluz2b3 11714 . . . 4 (𝐴 ∈ (ℤ‘2) ↔ (𝐴 ∈ ℕ ∧ 𝐴 ≠ 1))
86, 7sylibr 224 . . 3 ((𝐴 ∈ ℕ ∧ 𝐴𝐼) → 𝐴 ∈ (ℤ‘2))
9 nnz 11351 . . . . . . . 8 (𝑦 ∈ ℕ → 𝑦 ∈ ℤ)
109ad2antrl 763 . . . . . . 7 (((𝐴 ∈ ℕ ∧ 𝐴𝐼) ∧ (𝑦 ∈ ℕ ∧ 𝑦𝐴)) → 𝑦 ∈ ℤ)
11 simprr 795 . . . . . . . 8 (((𝐴 ∈ ℕ ∧ 𝐴𝐼) ∧ (𝑦 ∈ ℕ ∧ 𝑦𝐴)) → 𝑦𝐴)
12 nnne0 11005 . . . . . . . . . 10 (𝑦 ∈ ℕ → 𝑦 ≠ 0)
1312ad2antrl 763 . . . . . . . . 9 (((𝐴 ∈ ℕ ∧ 𝐴𝐼) ∧ (𝑦 ∈ ℕ ∧ 𝑦𝐴)) → 𝑦 ≠ 0)
14 nnz 11351 . . . . . . . . . 10 (𝐴 ∈ ℕ → 𝐴 ∈ ℤ)
1514ad2antrr 761 . . . . . . . . 9 (((𝐴 ∈ ℕ ∧ 𝐴𝐼) ∧ (𝑦 ∈ ℕ ∧ 𝑦𝐴)) → 𝐴 ∈ ℤ)
16 dvdsval2 14921 . . . . . . . . 9 ((𝑦 ∈ ℤ ∧ 𝑦 ≠ 0 ∧ 𝐴 ∈ ℤ) → (𝑦𝐴 ↔ (𝐴 / 𝑦) ∈ ℤ))
1710, 13, 15, 16syl3anc 1323 . . . . . . . 8 (((𝐴 ∈ ℕ ∧ 𝐴𝐼) ∧ (𝑦 ∈ ℕ ∧ 𝑦𝐴)) → (𝑦𝐴 ↔ (𝐴 / 𝑦) ∈ ℤ))
1811, 17mpbid 222 . . . . . . 7 (((𝐴 ∈ ℕ ∧ 𝐴𝐼) ∧ (𝑦 ∈ ℕ ∧ 𝑦𝐴)) → (𝐴 / 𝑦) ∈ ℤ)
1915zcnd 11435 . . . . . . . . 9 (((𝐴 ∈ ℕ ∧ 𝐴𝐼) ∧ (𝑦 ∈ ℕ ∧ 𝑦𝐴)) → 𝐴 ∈ ℂ)
20 nncn 10980 . . . . . . . . . 10 (𝑦 ∈ ℕ → 𝑦 ∈ ℂ)
2120ad2antrl 763 . . . . . . . . 9 (((𝐴 ∈ ℕ ∧ 𝐴𝐼) ∧ (𝑦 ∈ ℕ ∧ 𝑦𝐴)) → 𝑦 ∈ ℂ)
2219, 21, 13divcan2d 10755 . . . . . . . 8 (((𝐴 ∈ ℕ ∧ 𝐴𝐼) ∧ (𝑦 ∈ ℕ ∧ 𝑦𝐴)) → (𝑦 · (𝐴 / 𝑦)) = 𝐴)
23 simplr 791 . . . . . . . 8 (((𝐴 ∈ ℕ ∧ 𝐴𝐼) ∧ (𝑦 ∈ ℕ ∧ 𝑦𝐴)) → 𝐴𝐼)
2422, 23eqeltrd 2698 . . . . . . 7 (((𝐴 ∈ ℕ ∧ 𝐴𝐼) ∧ (𝑦 ∈ ℕ ∧ 𝑦𝐴)) → (𝑦 · (𝐴 / 𝑦)) ∈ 𝐼)
25 zringbas 19756 . . . . . . . 8 ℤ = (Base‘ℤring)
26 eqid 2621 . . . . . . . 8 (Unit‘ℤring) = (Unit‘ℤring)
27 zringmulr 19759 . . . . . . . 8 · = (.r‘ℤring)
282, 25, 26, 27irredmul 18641 . . . . . . 7 ((𝑦 ∈ ℤ ∧ (𝐴 / 𝑦) ∈ ℤ ∧ (𝑦 · (𝐴 / 𝑦)) ∈ 𝐼) → (𝑦 ∈ (Unit‘ℤring) ∨ (𝐴 / 𝑦) ∈ (Unit‘ℤring)))
2910, 18, 24, 28syl3anc 1323 . . . . . 6 (((𝐴 ∈ ℕ ∧ 𝐴𝐼) ∧ (𝑦 ∈ ℕ ∧ 𝑦𝐴)) → (𝑦 ∈ (Unit‘ℤring) ∨ (𝐴 / 𝑦) ∈ (Unit‘ℤring)))
30 zringunit 19768 . . . . . . . . . 10 (𝑦 ∈ (Unit‘ℤring) ↔ (𝑦 ∈ ℤ ∧ (abs‘𝑦) = 1))
3130baib 943 . . . . . . . . 9 (𝑦 ∈ ℤ → (𝑦 ∈ (Unit‘ℤring) ↔ (abs‘𝑦) = 1))
3210, 31syl 17 . . . . . . . 8 (((𝐴 ∈ ℕ ∧ 𝐴𝐼) ∧ (𝑦 ∈ ℕ ∧ 𝑦𝐴)) → (𝑦 ∈ (Unit‘ℤring) ↔ (abs‘𝑦) = 1))
33 nnnn0 11251 . . . . . . . . . . 11 (𝑦 ∈ ℕ → 𝑦 ∈ ℕ0)
34 nn0re 11253 . . . . . . . . . . . 12 (𝑦 ∈ ℕ0𝑦 ∈ ℝ)
35 nn0ge0 11270 . . . . . . . . . . . 12 (𝑦 ∈ ℕ0 → 0 ≤ 𝑦)
3634, 35absidd 14103 . . . . . . . . . . 11 (𝑦 ∈ ℕ0 → (abs‘𝑦) = 𝑦)
3733, 36syl 17 . . . . . . . . . 10 (𝑦 ∈ ℕ → (abs‘𝑦) = 𝑦)
3837ad2antrl 763 . . . . . . . . 9 (((𝐴 ∈ ℕ ∧ 𝐴𝐼) ∧ (𝑦 ∈ ℕ ∧ 𝑦𝐴)) → (abs‘𝑦) = 𝑦)
3938eqeq1d 2623 . . . . . . . 8 (((𝐴 ∈ ℕ ∧ 𝐴𝐼) ∧ (𝑦 ∈ ℕ ∧ 𝑦𝐴)) → ((abs‘𝑦) = 1 ↔ 𝑦 = 1))
4032, 39bitrd 268 . . . . . . 7 (((𝐴 ∈ ℕ ∧ 𝐴𝐼) ∧ (𝑦 ∈ ℕ ∧ 𝑦𝐴)) → (𝑦 ∈ (Unit‘ℤring) ↔ 𝑦 = 1))
41 zringunit 19768 . . . . . . . . . 10 ((𝐴 / 𝑦) ∈ (Unit‘ℤring) ↔ ((𝐴 / 𝑦) ∈ ℤ ∧ (abs‘(𝐴 / 𝑦)) = 1))
4241baib 943 . . . . . . . . 9 ((𝐴 / 𝑦) ∈ ℤ → ((𝐴 / 𝑦) ∈ (Unit‘ℤring) ↔ (abs‘(𝐴 / 𝑦)) = 1))
4318, 42syl 17 . . . . . . . 8 (((𝐴 ∈ ℕ ∧ 𝐴𝐼) ∧ (𝑦 ∈ ℕ ∧ 𝑦𝐴)) → ((𝐴 / 𝑦) ∈ (Unit‘ℤring) ↔ (abs‘(𝐴 / 𝑦)) = 1))
44 nnre 10979 . . . . . . . . . . . . 13 (𝐴 ∈ ℕ → 𝐴 ∈ ℝ)
4544ad2antrr 761 . . . . . . . . . . . 12 (((𝐴 ∈ ℕ ∧ 𝐴𝐼) ∧ (𝑦 ∈ ℕ ∧ 𝑦𝐴)) → 𝐴 ∈ ℝ)
46 simprl 793 . . . . . . . . . . . 12 (((𝐴 ∈ ℕ ∧ 𝐴𝐼) ∧ (𝑦 ∈ ℕ ∧ 𝑦𝐴)) → 𝑦 ∈ ℕ)
4745, 46nndivred 11021 . . . . . . . . . . 11 (((𝐴 ∈ ℕ ∧ 𝐴𝐼) ∧ (𝑦 ∈ ℕ ∧ 𝑦𝐴)) → (𝐴 / 𝑦) ∈ ℝ)
48 nnnn0 11251 . . . . . . . . . . . . . 14 (𝐴 ∈ ℕ → 𝐴 ∈ ℕ0)
49 nn0ge0 11270 . . . . . . . . . . . . . 14 (𝐴 ∈ ℕ0 → 0 ≤ 𝐴)
5048, 49syl 17 . . . . . . . . . . . . 13 (𝐴 ∈ ℕ → 0 ≤ 𝐴)
5150ad2antrr 761 . . . . . . . . . . . 12 (((𝐴 ∈ ℕ ∧ 𝐴𝐼) ∧ (𝑦 ∈ ℕ ∧ 𝑦𝐴)) → 0 ≤ 𝐴)
5246nnred 10987 . . . . . . . . . . . 12 (((𝐴 ∈ ℕ ∧ 𝐴𝐼) ∧ (𝑦 ∈ ℕ ∧ 𝑦𝐴)) → 𝑦 ∈ ℝ)
53 nngt0 11001 . . . . . . . . . . . . 13 (𝑦 ∈ ℕ → 0 < 𝑦)
5453ad2antrl 763 . . . . . . . . . . . 12 (((𝐴 ∈ ℕ ∧ 𝐴𝐼) ∧ (𝑦 ∈ ℕ ∧ 𝑦𝐴)) → 0 < 𝑦)
55 divge0 10844 . . . . . . . . . . . 12 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝑦 ∈ ℝ ∧ 0 < 𝑦)) → 0 ≤ (𝐴 / 𝑦))
5645, 51, 52, 54, 55syl22anc 1324 . . . . . . . . . . 11 (((𝐴 ∈ ℕ ∧ 𝐴𝐼) ∧ (𝑦 ∈ ℕ ∧ 𝑦𝐴)) → 0 ≤ (𝐴 / 𝑦))
5747, 56absidd 14103 . . . . . . . . . 10 (((𝐴 ∈ ℕ ∧ 𝐴𝐼) ∧ (𝑦 ∈ ℕ ∧ 𝑦𝐴)) → (abs‘(𝐴 / 𝑦)) = (𝐴 / 𝑦))
5857eqeq1d 2623 . . . . . . . . 9 (((𝐴 ∈ ℕ ∧ 𝐴𝐼) ∧ (𝑦 ∈ ℕ ∧ 𝑦𝐴)) → ((abs‘(𝐴 / 𝑦)) = 1 ↔ (𝐴 / 𝑦) = 1))
59 1cnd 10008 . . . . . . . . . 10 (((𝐴 ∈ ℕ ∧ 𝐴𝐼) ∧ (𝑦 ∈ ℕ ∧ 𝑦𝐴)) → 1 ∈ ℂ)
6019, 21, 59, 13divmuld 10775 . . . . . . . . 9 (((𝐴 ∈ ℕ ∧ 𝐴𝐼) ∧ (𝑦 ∈ ℕ ∧ 𝑦𝐴)) → ((𝐴 / 𝑦) = 1 ↔ (𝑦 · 1) = 𝐴))
6121mulid1d 10009 . . . . . . . . . 10 (((𝐴 ∈ ℕ ∧ 𝐴𝐼) ∧ (𝑦 ∈ ℕ ∧ 𝑦𝐴)) → (𝑦 · 1) = 𝑦)
6261eqeq1d 2623 . . . . . . . . 9 (((𝐴 ∈ ℕ ∧ 𝐴𝐼) ∧ (𝑦 ∈ ℕ ∧ 𝑦𝐴)) → ((𝑦 · 1) = 𝐴𝑦 = 𝐴))
6358, 60, 623bitrd 294 . . . . . . . 8 (((𝐴 ∈ ℕ ∧ 𝐴𝐼) ∧ (𝑦 ∈ ℕ ∧ 𝑦𝐴)) → ((abs‘(𝐴 / 𝑦)) = 1 ↔ 𝑦 = 𝐴))
6443, 63bitrd 268 . . . . . . 7 (((𝐴 ∈ ℕ ∧ 𝐴𝐼) ∧ (𝑦 ∈ ℕ ∧ 𝑦𝐴)) → ((𝐴 / 𝑦) ∈ (Unit‘ℤring) ↔ 𝑦 = 𝐴))
6540, 64orbi12d 745 . . . . . 6 (((𝐴 ∈ ℕ ∧ 𝐴𝐼) ∧ (𝑦 ∈ ℕ ∧ 𝑦𝐴)) → ((𝑦 ∈ (Unit‘ℤring) ∨ (𝐴 / 𝑦) ∈ (Unit‘ℤring)) ↔ (𝑦 = 1 ∨ 𝑦 = 𝐴)))
6629, 65mpbid 222 . . . . 5 (((𝐴 ∈ ℕ ∧ 𝐴𝐼) ∧ (𝑦 ∈ ℕ ∧ 𝑦𝐴)) → (𝑦 = 1 ∨ 𝑦 = 𝐴))
6766expr 642 . . . 4 (((𝐴 ∈ ℕ ∧ 𝐴𝐼) ∧ 𝑦 ∈ ℕ) → (𝑦𝐴 → (𝑦 = 1 ∨ 𝑦 = 𝐴)))
6867ralrimiva 2961 . . 3 ((𝐴 ∈ ℕ ∧ 𝐴𝐼) → ∀𝑦 ∈ ℕ (𝑦𝐴 → (𝑦 = 1 ∨ 𝑦 = 𝐴)))
69 isprm2 15330 . . 3 (𝐴 ∈ ℙ ↔ (𝐴 ∈ (ℤ‘2) ∧ ∀𝑦 ∈ ℕ (𝑦𝐴 → (𝑦 = 1 ∨ 𝑦 = 𝐴))))
708, 68, 69sylanbrc 697 . 2 ((𝐴 ∈ ℕ ∧ 𝐴𝐼) → 𝐴 ∈ ℙ)
71 prmz 15324 . . . 4 (𝐴 ∈ ℙ → 𝐴 ∈ ℤ)
72 1nprm 15327 . . . . 5 ¬ 1 ∈ ℙ
73 zringunit 19768 . . . . . 6 (𝐴 ∈ (Unit‘ℤring) ↔ (𝐴 ∈ ℤ ∧ (abs‘𝐴) = 1))
74 prmnn 15323 . . . . . . . . . 10 (𝐴 ∈ ℙ → 𝐴 ∈ ℕ)
75 nn0re 11253 . . . . . . . . . . 11 (𝐴 ∈ ℕ0𝐴 ∈ ℝ)
7675, 49absidd 14103 . . . . . . . . . 10 (𝐴 ∈ ℕ0 → (abs‘𝐴) = 𝐴)
7774, 48, 763syl 18 . . . . . . . . 9 (𝐴 ∈ ℙ → (abs‘𝐴) = 𝐴)
78 id 22 . . . . . . . . 9 (𝐴 ∈ ℙ → 𝐴 ∈ ℙ)
7977, 78eqeltrd 2698 . . . . . . . 8 (𝐴 ∈ ℙ → (abs‘𝐴) ∈ ℙ)
80 eleq1 2686 . . . . . . . 8 ((abs‘𝐴) = 1 → ((abs‘𝐴) ∈ ℙ ↔ 1 ∈ ℙ))
8179, 80syl5ibcom 235 . . . . . . 7 (𝐴 ∈ ℙ → ((abs‘𝐴) = 1 → 1 ∈ ℙ))
8281adantld 483 . . . . . 6 (𝐴 ∈ ℙ → ((𝐴 ∈ ℤ ∧ (abs‘𝐴) = 1) → 1 ∈ ℙ))
8373, 82syl5bi 232 . . . . 5 (𝐴 ∈ ℙ → (𝐴 ∈ (Unit‘ℤring) → 1 ∈ ℙ))
8472, 83mtoi 190 . . . 4 (𝐴 ∈ ℙ → ¬ 𝐴 ∈ (Unit‘ℤring))
85 simplrl 799 . . . . . . . . . . . 12 (((𝐴 ∈ ℙ ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) ∧ (𝑥 · 𝑦) = 𝐴) → 𝑥 ∈ ℤ)
8685zcnd 11435 . . . . . . . . . . 11 (((𝐴 ∈ ℙ ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) ∧ (𝑥 · 𝑦) = 𝐴) → 𝑥 ∈ ℂ)
8774ad2antrr 761 . . . . . . . . . . . . . 14 (((𝐴 ∈ ℙ ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) ∧ (𝑥 · 𝑦) = 𝐴) → 𝐴 ∈ ℕ)
8887nnne0d 11017 . . . . . . . . . . . . 13 (((𝐴 ∈ ℙ ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) ∧ (𝑥 · 𝑦) = 𝐴) → 𝐴 ≠ 0)
89 simpr 477 . . . . . . . . . . . . 13 (((𝐴 ∈ ℙ ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) ∧ (𝑥 · 𝑦) = 𝐴) → (𝑥 · 𝑦) = 𝐴)
90 simplrr 800 . . . . . . . . . . . . . . 15 (((𝐴 ∈ ℙ ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) ∧ (𝑥 · 𝑦) = 𝐴) → 𝑦 ∈ ℤ)
9190zcnd 11435 . . . . . . . . . . . . . 14 (((𝐴 ∈ ℙ ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) ∧ (𝑥 · 𝑦) = 𝐴) → 𝑦 ∈ ℂ)
9291mul02d 10186 . . . . . . . . . . . . 13 (((𝐴 ∈ ℙ ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) ∧ (𝑥 · 𝑦) = 𝐴) → (0 · 𝑦) = 0)
9388, 89, 923netr4d 2867 . . . . . . . . . . . 12 (((𝐴 ∈ ℙ ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) ∧ (𝑥 · 𝑦) = 𝐴) → (𝑥 · 𝑦) ≠ (0 · 𝑦))
94 oveq1 6617 . . . . . . . . . . . . 13 (𝑥 = 0 → (𝑥 · 𝑦) = (0 · 𝑦))
9594necon3i 2822 . . . . . . . . . . . 12 ((𝑥 · 𝑦) ≠ (0 · 𝑦) → 𝑥 ≠ 0)
9693, 95syl 17 . . . . . . . . . . 11 (((𝐴 ∈ ℙ ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) ∧ (𝑥 · 𝑦) = 𝐴) → 𝑥 ≠ 0)
9786, 96absne0d 14128 . . . . . . . . . 10 (((𝐴 ∈ ℙ ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) ∧ (𝑥 · 𝑦) = 𝐴) → (abs‘𝑥) ≠ 0)
9897neneqd 2795 . . . . . . . . 9 (((𝐴 ∈ ℙ ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) ∧ (𝑥 · 𝑦) = 𝐴) → ¬ (abs‘𝑥) = 0)
99 nn0abscl 13994 . . . . . . . . . . . 12 (𝑥 ∈ ℤ → (abs‘𝑥) ∈ ℕ0)
10085, 99syl 17 . . . . . . . . . . 11 (((𝐴 ∈ ℙ ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) ∧ (𝑥 · 𝑦) = 𝐴) → (abs‘𝑥) ∈ ℕ0)
101 elnn0 11246 . . . . . . . . . . 11 ((abs‘𝑥) ∈ ℕ0 ↔ ((abs‘𝑥) ∈ ℕ ∨ (abs‘𝑥) = 0))
102100, 101sylib 208 . . . . . . . . . 10 (((𝐴 ∈ ℙ ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) ∧ (𝑥 · 𝑦) = 𝐴) → ((abs‘𝑥) ∈ ℕ ∨ (abs‘𝑥) = 0))
103102ord 392 . . . . . . . . 9 (((𝐴 ∈ ℙ ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) ∧ (𝑥 · 𝑦) = 𝐴) → (¬ (abs‘𝑥) ∈ ℕ → (abs‘𝑥) = 0))
10498, 103mt3d 140 . . . . . . . 8 (((𝐴 ∈ ℙ ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) ∧ (𝑥 · 𝑦) = 𝐴) → (abs‘𝑥) ∈ ℕ)
10569simprbi 480 . . . . . . . . 9 (𝐴 ∈ ℙ → ∀𝑦 ∈ ℕ (𝑦𝐴 → (𝑦 = 1 ∨ 𝑦 = 𝐴)))
106105ad2antrr 761 . . . . . . . 8 (((𝐴 ∈ ℙ ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) ∧ (𝑥 · 𝑦) = 𝐴) → ∀𝑦 ∈ ℕ (𝑦𝐴 → (𝑦 = 1 ∨ 𝑦 = 𝐴)))
107 dvdsmul1 14938 . . . . . . . . . . 11 ((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ) → 𝑥 ∥ (𝑥 · 𝑦))
108107ad2antlr 762 . . . . . . . . . 10 (((𝐴 ∈ ℙ ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) ∧ (𝑥 · 𝑦) = 𝐴) → 𝑥 ∥ (𝑥 · 𝑦))
109108, 89breqtrd 4644 . . . . . . . . 9 (((𝐴 ∈ ℙ ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) ∧ (𝑥 · 𝑦) = 𝐴) → 𝑥𝐴)
11071ad2antrr 761 . . . . . . . . . 10 (((𝐴 ∈ ℙ ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) ∧ (𝑥 · 𝑦) = 𝐴) → 𝐴 ∈ ℤ)
111 absdvdsb 14935 . . . . . . . . . 10 ((𝑥 ∈ ℤ ∧ 𝐴 ∈ ℤ) → (𝑥𝐴 ↔ (abs‘𝑥) ∥ 𝐴))
11285, 110, 111syl2anc 692 . . . . . . . . 9 (((𝐴 ∈ ℙ ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) ∧ (𝑥 · 𝑦) = 𝐴) → (𝑥𝐴 ↔ (abs‘𝑥) ∥ 𝐴))
113109, 112mpbid 222 . . . . . . . 8 (((𝐴 ∈ ℙ ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) ∧ (𝑥 · 𝑦) = 𝐴) → (abs‘𝑥) ∥ 𝐴)
114 breq1 4621 . . . . . . . . . 10 (𝑦 = (abs‘𝑥) → (𝑦𝐴 ↔ (abs‘𝑥) ∥ 𝐴))
115 eqeq1 2625 . . . . . . . . . . 11 (𝑦 = (abs‘𝑥) → (𝑦 = 1 ↔ (abs‘𝑥) = 1))
116 eqeq1 2625 . . . . . . . . . . 11 (𝑦 = (abs‘𝑥) → (𝑦 = 𝐴 ↔ (abs‘𝑥) = 𝐴))
117115, 116orbi12d 745 . . . . . . . . . 10 (𝑦 = (abs‘𝑥) → ((𝑦 = 1 ∨ 𝑦 = 𝐴) ↔ ((abs‘𝑥) = 1 ∨ (abs‘𝑥) = 𝐴)))
118114, 117imbi12d 334 . . . . . . . . 9 (𝑦 = (abs‘𝑥) → ((𝑦𝐴 → (𝑦 = 1 ∨ 𝑦 = 𝐴)) ↔ ((abs‘𝑥) ∥ 𝐴 → ((abs‘𝑥) = 1 ∨ (abs‘𝑥) = 𝐴))))
119118rspcv 3294 . . . . . . . 8 ((abs‘𝑥) ∈ ℕ → (∀𝑦 ∈ ℕ (𝑦𝐴 → (𝑦 = 1 ∨ 𝑦 = 𝐴)) → ((abs‘𝑥) ∥ 𝐴 → ((abs‘𝑥) = 1 ∨ (abs‘𝑥) = 𝐴))))
120104, 106, 113, 119syl3c 66 . . . . . . 7 (((𝐴 ∈ ℙ ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) ∧ (𝑥 · 𝑦) = 𝐴) → ((abs‘𝑥) = 1 ∨ (abs‘𝑥) = 𝐴))
121 zringunit 19768 . . . . . . . . . 10 (𝑥 ∈ (Unit‘ℤring) ↔ (𝑥 ∈ ℤ ∧ (abs‘𝑥) = 1))
122121baib 943 . . . . . . . . 9 (𝑥 ∈ ℤ → (𝑥 ∈ (Unit‘ℤring) ↔ (abs‘𝑥) = 1))
12385, 122syl 17 . . . . . . . 8 (((𝐴 ∈ ℙ ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) ∧ (𝑥 · 𝑦) = 𝐴) → (𝑥 ∈ (Unit‘ℤring) ↔ (abs‘𝑥) = 1))
12490, 31syl 17 . . . . . . . . 9 (((𝐴 ∈ ℙ ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) ∧ (𝑥 · 𝑦) = 𝐴) → (𝑦 ∈ (Unit‘ℤring) ↔ (abs‘𝑦) = 1))
12591abscld 14117 . . . . . . . . . . 11 (((𝐴 ∈ ℙ ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) ∧ (𝑥 · 𝑦) = 𝐴) → (abs‘𝑦) ∈ ℝ)
126125recnd 10020 . . . . . . . . . 10 (((𝐴 ∈ ℙ ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) ∧ (𝑥 · 𝑦) = 𝐴) → (abs‘𝑦) ∈ ℂ)
127 1cnd 10008 . . . . . . . . . 10 (((𝐴 ∈ ℙ ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) ∧ (𝑥 · 𝑦) = 𝐴) → 1 ∈ ℂ)
12886abscld 14117 . . . . . . . . . . 11 (((𝐴 ∈ ℙ ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) ∧ (𝑥 · 𝑦) = 𝐴) → (abs‘𝑥) ∈ ℝ)
129128recnd 10020 . . . . . . . . . 10 (((𝐴 ∈ ℙ ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) ∧ (𝑥 · 𝑦) = 𝐴) → (abs‘𝑥) ∈ ℂ)
130126, 127, 129, 97mulcand 10612 . . . . . . . . 9 (((𝐴 ∈ ℙ ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) ∧ (𝑥 · 𝑦) = 𝐴) → (((abs‘𝑥) · (abs‘𝑦)) = ((abs‘𝑥) · 1) ↔ (abs‘𝑦) = 1))
13189fveq2d 6157 . . . . . . . . . . . 12 (((𝐴 ∈ ℙ ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) ∧ (𝑥 · 𝑦) = 𝐴) → (abs‘(𝑥 · 𝑦)) = (abs‘𝐴))
13286, 91absmuld 14135 . . . . . . . . . . . 12 (((𝐴 ∈ ℙ ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) ∧ (𝑥 · 𝑦) = 𝐴) → (abs‘(𝑥 · 𝑦)) = ((abs‘𝑥) · (abs‘𝑦)))
13377ad2antrr 761 . . . . . . . . . . . 12 (((𝐴 ∈ ℙ ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) ∧ (𝑥 · 𝑦) = 𝐴) → (abs‘𝐴) = 𝐴)
134131, 132, 1333eqtr3d 2663 . . . . . . . . . . 11 (((𝐴 ∈ ℙ ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) ∧ (𝑥 · 𝑦) = 𝐴) → ((abs‘𝑥) · (abs‘𝑦)) = 𝐴)
135129mulid1d 10009 . . . . . . . . . . 11 (((𝐴 ∈ ℙ ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) ∧ (𝑥 · 𝑦) = 𝐴) → ((abs‘𝑥) · 1) = (abs‘𝑥))
136134, 135eqeq12d 2636 . . . . . . . . . 10 (((𝐴 ∈ ℙ ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) ∧ (𝑥 · 𝑦) = 𝐴) → (((abs‘𝑥) · (abs‘𝑦)) = ((abs‘𝑥) · 1) ↔ 𝐴 = (abs‘𝑥)))
137 eqcom 2628 . . . . . . . . . 10 (𝐴 = (abs‘𝑥) ↔ (abs‘𝑥) = 𝐴)
138136, 137syl6bb 276 . . . . . . . . 9 (((𝐴 ∈ ℙ ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) ∧ (𝑥 · 𝑦) = 𝐴) → (((abs‘𝑥) · (abs‘𝑦)) = ((abs‘𝑥) · 1) ↔ (abs‘𝑥) = 𝐴))
139124, 130, 1383bitr2d 296 . . . . . . . 8 (((𝐴 ∈ ℙ ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) ∧ (𝑥 · 𝑦) = 𝐴) → (𝑦 ∈ (Unit‘ℤring) ↔ (abs‘𝑥) = 𝐴))
140123, 139orbi12d 745 . . . . . . 7 (((𝐴 ∈ ℙ ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) ∧ (𝑥 · 𝑦) = 𝐴) → ((𝑥 ∈ (Unit‘ℤring) ∨ 𝑦 ∈ (Unit‘ℤring)) ↔ ((abs‘𝑥) = 1 ∨ (abs‘𝑥) = 𝐴)))
141120, 140mpbird 247 . . . . . 6 (((𝐴 ∈ ℙ ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) ∧ (𝑥 · 𝑦) = 𝐴) → (𝑥 ∈ (Unit‘ℤring) ∨ 𝑦 ∈ (Unit‘ℤring)))
142141ex 450 . . . . 5 ((𝐴 ∈ ℙ ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → ((𝑥 · 𝑦) = 𝐴 → (𝑥 ∈ (Unit‘ℤring) ∨ 𝑦 ∈ (Unit‘ℤring))))
143142ralrimivva 2966 . . . 4 (𝐴 ∈ ℙ → ∀𝑥 ∈ ℤ ∀𝑦 ∈ ℤ ((𝑥 · 𝑦) = 𝐴 → (𝑥 ∈ (Unit‘ℤring) ∨ 𝑦 ∈ (Unit‘ℤring))))
14425, 26, 2, 27isirred2 18633 . . . 4 (𝐴𝐼 ↔ (𝐴 ∈ ℤ ∧ ¬ 𝐴 ∈ (Unit‘ℤring) ∧ ∀𝑥 ∈ ℤ ∀𝑦 ∈ ℤ ((𝑥 · 𝑦) = 𝐴 → (𝑥 ∈ (Unit‘ℤring) ∨ 𝑦 ∈ (Unit‘ℤring)))))
14571, 84, 143, 144syl3anbrc 1244 . . 3 (𝐴 ∈ ℙ → 𝐴𝐼)
146145adantl 482 . 2 ((𝐴 ∈ ℕ ∧ 𝐴 ∈ ℙ) → 𝐴𝐼)
14770, 146impbida 876 1 (𝐴 ∈ ℕ → (𝐴𝐼𝐴 ∈ ℙ))
 Colors of variables: wff setvar class Syntax hints:  ¬ wn 3   → wi 4   ↔ wb 196   ∨ wo 383   ∧ wa 384   = wceq 1480   ∈ wcel 1987   ≠ wne 2790  ∀wral 2907   class class class wbr 4618  ‘cfv 5852  (class class class)co 6610  ℂcc 9886  ℝcr 9887  0cc0 9888  1c1 9889   · cmul 9893   < clt 10026   ≤ cle 10027   / cdiv 10636  ℕcn 10972  2c2 11022  ℕ0cn0 11244  ℤcz 11329  ℤ≥cuz 11639  abscabs 13916   ∥ cdvds 14918  ℙcprime 15320  Ringcrg 18479  Unitcui 18571  Irredcir 18572  ℤringzring 19750 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-rep 4736  ax-sep 4746  ax-nul 4754  ax-pow 4808  ax-pr 4872  ax-un 6909  ax-cnex 9944  ax-resscn 9945  ax-1cn 9946  ax-icn 9947  ax-addcl 9948  ax-addrcl 9949  ax-mulcl 9950  ax-mulrcl 9951  ax-mulcom 9952  ax-addass 9953  ax-mulass 9954  ax-distr 9955  ax-i2m1 9956  ax-1ne0 9957  ax-1rid 9958  ax-rnegex 9959  ax-rrecex 9960  ax-cnre 9961  ax-pre-lttri 9962  ax-pre-lttrn 9963  ax-pre-ltadd 9964  ax-pre-mulgt0 9965  ax-pre-sup 9966  ax-addf 9967  ax-mulf 9968 This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-nel 2894  df-ral 2912  df-rex 2913  df-reu 2914  df-rmo 2915  df-rab 2916  df-v 3191  df-sbc 3422  df-csb 3519  df-dif 3562  df-un 3564  df-in 3566  df-ss 3573  df-pss 3575  df-nul 3897  df-if 4064  df-pw 4137  df-sn 4154  df-pr 4156  df-tp 4158  df-op 4160  df-uni 4408  df-int 4446  df-iun 4492  df-br 4619  df-opab 4679  df-mpt 4680  df-tr 4718  df-eprel 4990  df-id 4994  df-po 5000  df-so 5001  df-fr 5038  df-we 5040  df-xp 5085  df-rel 5086  df-cnv 5087  df-co 5088  df-dm 5089  df-rn 5090  df-res 5091  df-ima 5092  df-pred 5644  df-ord 5690  df-on 5691  df-lim 5692  df-suc 5693  df-iota 5815  df-fun 5854  df-fn 5855  df-f 5856  df-f1 5857  df-fo 5858  df-f1o 5859  df-fv 5860  df-riota 6571  df-ov 6613  df-oprab 6614  df-mpt2 6615  df-om 7020  df-1st 7120  df-2nd 7121  df-tpos 7304  df-wrecs 7359  df-recs 7420  df-rdg 7458  df-1o 7512  df-2o 7513  df-oadd 7516  df-er 7694  df-en 7908  df-dom 7909  df-sdom 7910  df-fin 7911  df-sup 8300  df-pnf 10028  df-mnf 10029  df-xr 10030  df-ltxr 10031  df-le 10032  df-sub 10220  df-neg 10221  df-div 10637  df-nn 10973  df-2 11031  df-3 11032  df-4 11033  df-5 11034  df-6 11035  df-7 11036  df-8 11037  df-9 11038  df-n0 11245  df-z 11330  df-dec 11446  df-uz 11640  df-rp 11785  df-fz 12277  df-seq 12750  df-exp 12809  df-cj 13781  df-re 13782  df-im 13783  df-sqrt 13917  df-abs 13918  df-dvds 14919  df-prm 15321  df-gz 15569  df-struct 15794  df-ndx 15795  df-slot 15796  df-base 15797  df-sets 15798  df-ress 15799  df-plusg 15886  df-mulr 15887  df-starv 15888  df-tset 15892  df-ple 15893  df-ds 15896  df-unif 15897  df-0g 16034  df-mgm 17174  df-sgrp 17216  df-mnd 17227  df-grp 17357  df-minusg 17358  df-subg 17523  df-cmn 18127  df-mgp 18422  df-ur 18434  df-ring 18481  df-cring 18482  df-oppr 18555  df-dvdsr 18573  df-unit 18574  df-irred 18575  df-invr 18604  df-dvr 18615  df-drng 18681  df-subrg 18710  df-cnfld 19679  df-zring 19751 This theorem is referenced by:  dfprm2  19774  prmirred  19775
 Copyright terms: Public domain W3C validator