MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  islmhmd Structured version   Visualization version   GIF version

Theorem islmhmd 19811
Description: Deduction for a module homomorphism. (Contributed by Stefan O'Rear, 4-Feb-2015.)
Hypotheses
Ref Expression
islmhmd.x 𝑋 = (Base‘𝑆)
islmhmd.a · = ( ·𝑠𝑆)
islmhmd.b × = ( ·𝑠𝑇)
islmhmd.k 𝐾 = (Scalar‘𝑆)
islmhmd.j 𝐽 = (Scalar‘𝑇)
islmhmd.n 𝑁 = (Base‘𝐾)
islmhmd.s (𝜑𝑆 ∈ LMod)
islmhmd.t (𝜑𝑇 ∈ LMod)
islmhmd.c (𝜑𝐽 = 𝐾)
islmhmd.f (𝜑𝐹 ∈ (𝑆 GrpHom 𝑇))
islmhmd.l ((𝜑 ∧ (𝑥𝑁𝑦𝑋)) → (𝐹‘(𝑥 · 𝑦)) = (𝑥 × (𝐹𝑦)))
Assertion
Ref Expression
islmhmd (𝜑𝐹 ∈ (𝑆 LMHom 𝑇))
Distinct variable groups:   𝜑,𝑥,𝑦   𝑥,𝐹,𝑦   𝑥,𝑆,𝑦   𝑥,𝑇,𝑦   𝑥,𝑋,𝑦   𝑥,𝐽,𝑦   𝑥,𝑁,𝑦   𝑥,𝐾,𝑦
Allowed substitution hints:   · (𝑥,𝑦)   × (𝑥,𝑦)

Proof of Theorem islmhmd
StepHypRef Expression
1 islmhmd.s . 2 (𝜑𝑆 ∈ LMod)
2 islmhmd.t . 2 (𝜑𝑇 ∈ LMod)
3 islmhmd.f . . 3 (𝜑𝐹 ∈ (𝑆 GrpHom 𝑇))
4 islmhmd.c . . 3 (𝜑𝐽 = 𝐾)
5 islmhmd.l . . . 4 ((𝜑 ∧ (𝑥𝑁𝑦𝑋)) → (𝐹‘(𝑥 · 𝑦)) = (𝑥 × (𝐹𝑦)))
65ralrimivva 3191 . . 3 (𝜑 → ∀𝑥𝑁𝑦𝑋 (𝐹‘(𝑥 · 𝑦)) = (𝑥 × (𝐹𝑦)))
73, 4, 63jca 1124 . 2 (𝜑 → (𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝐽 = 𝐾 ∧ ∀𝑥𝑁𝑦𝑋 (𝐹‘(𝑥 · 𝑦)) = (𝑥 × (𝐹𝑦))))
8 islmhmd.k . . 3 𝐾 = (Scalar‘𝑆)
9 islmhmd.j . . 3 𝐽 = (Scalar‘𝑇)
10 islmhmd.n . . 3 𝑁 = (Base‘𝐾)
11 islmhmd.x . . 3 𝑋 = (Base‘𝑆)
12 islmhmd.a . . 3 · = ( ·𝑠𝑆)
13 islmhmd.b . . 3 × = ( ·𝑠𝑇)
148, 9, 10, 11, 12, 13islmhm 19799 . 2 (𝐹 ∈ (𝑆 LMHom 𝑇) ↔ ((𝑆 ∈ LMod ∧ 𝑇 ∈ LMod) ∧ (𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝐽 = 𝐾 ∧ ∀𝑥𝑁𝑦𝑋 (𝐹‘(𝑥 · 𝑦)) = (𝑥 × (𝐹𝑦)))))
151, 2, 7, 14syl21anbrc 1340 1 (𝜑𝐹 ∈ (𝑆 LMHom 𝑇))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398  w3a 1083   = wceq 1537  wcel 2114  wral 3138  cfv 6355  (class class class)co 7156  Basecbs 16483  Scalarcsca 16568   ·𝑠 cvsca 16569   GrpHom cghm 18355  LModclmod 19634   LMHom clmhm 19791
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2793  ax-sep 5203  ax-nul 5210  ax-pow 5266  ax-pr 5330
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ral 3143  df-rex 3144  df-rab 3147  df-v 3496  df-sbc 3773  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-nul 4292  df-if 4468  df-sn 4568  df-pr 4570  df-op 4574  df-uni 4839  df-br 5067  df-opab 5129  df-id 5460  df-xp 5561  df-rel 5562  df-cnv 5563  df-co 5564  df-dm 5565  df-iota 6314  df-fun 6357  df-fv 6363  df-ov 7159  df-oprab 7160  df-mpo 7161  df-lmhm 19794
This theorem is referenced by:  0lmhm  19812  idlmhm  19813  invlmhm  19814  lmhmco  19815  lmhmplusg  19816  lmhmvsca  19817  lmhmf1o  19818  reslmhm2  19825  reslmhm2b  19826  pwsdiaglmhm  19829  pwssplit3  19833  frlmup1  20942  quslmhm  30924  frlmsnic  39169
  Copyright terms: Public domain W3C validator