MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lgsval Structured version   Visualization version   GIF version

Theorem lgsval 25877
Description: Value of the Legendre symbol at an arbitrary integer. (Contributed by Mario Carneiro, 4-Feb-2015.)
Hypothesis
Ref Expression
lgsval.1 𝐹 = (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, (if(𝑛 = 2, if(2 ∥ 𝐴, 0, if((𝐴 mod 8) ∈ {1, 7}, 1, -1)), ((((𝐴↑((𝑛 − 1) / 2)) + 1) mod 𝑛) − 1))↑(𝑛 pCnt 𝑁)), 1))
Assertion
Ref Expression
lgsval ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐴 /L 𝑁) = if(𝑁 = 0, if((𝐴↑2) = 1, 1, 0), (if((𝑁 < 0 ∧ 𝐴 < 0), -1, 1) · (seq1( · , 𝐹)‘(abs‘𝑁)))))
Distinct variable groups:   𝐴,𝑛   𝑛,𝑁
Allowed substitution hint:   𝐹(𝑛)

Proof of Theorem lgsval
Dummy variables 𝑎 𝑚 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpr 487 . . . 4 ((𝑎 = 𝐴𝑚 = 𝑁) → 𝑚 = 𝑁)
21eqeq1d 2823 . . 3 ((𝑎 = 𝐴𝑚 = 𝑁) → (𝑚 = 0 ↔ 𝑁 = 0))
3 simpl 485 . . . . . 6 ((𝑎 = 𝐴𝑚 = 𝑁) → 𝑎 = 𝐴)
43oveq1d 7171 . . . . 5 ((𝑎 = 𝐴𝑚 = 𝑁) → (𝑎↑2) = (𝐴↑2))
54eqeq1d 2823 . . . 4 ((𝑎 = 𝐴𝑚 = 𝑁) → ((𝑎↑2) = 1 ↔ (𝐴↑2) = 1))
65ifbid 4489 . . 3 ((𝑎 = 𝐴𝑚 = 𝑁) → if((𝑎↑2) = 1, 1, 0) = if((𝐴↑2) = 1, 1, 0))
71breq1d 5076 . . . . . 6 ((𝑎 = 𝐴𝑚 = 𝑁) → (𝑚 < 0 ↔ 𝑁 < 0))
83breq1d 5076 . . . . . 6 ((𝑎 = 𝐴𝑚 = 𝑁) → (𝑎 < 0 ↔ 𝐴 < 0))
97, 8anbi12d 632 . . . . 5 ((𝑎 = 𝐴𝑚 = 𝑁) → ((𝑚 < 0 ∧ 𝑎 < 0) ↔ (𝑁 < 0 ∧ 𝐴 < 0)))
109ifbid 4489 . . . 4 ((𝑎 = 𝐴𝑚 = 𝑁) → if((𝑚 < 0 ∧ 𝑎 < 0), -1, 1) = if((𝑁 < 0 ∧ 𝐴 < 0), -1, 1))
113breq2d 5078 . . . . . . . . . . . 12 ((𝑎 = 𝐴𝑚 = 𝑁) → (2 ∥ 𝑎 ↔ 2 ∥ 𝐴))
123oveq1d 7171 . . . . . . . . . . . . . 14 ((𝑎 = 𝐴𝑚 = 𝑁) → (𝑎 mod 8) = (𝐴 mod 8))
1312eleq1d 2897 . . . . . . . . . . . . 13 ((𝑎 = 𝐴𝑚 = 𝑁) → ((𝑎 mod 8) ∈ {1, 7} ↔ (𝐴 mod 8) ∈ {1, 7}))
1413ifbid 4489 . . . . . . . . . . . 12 ((𝑎 = 𝐴𝑚 = 𝑁) → if((𝑎 mod 8) ∈ {1, 7}, 1, -1) = if((𝐴 mod 8) ∈ {1, 7}, 1, -1))
1511, 14ifbieq2d 4492 . . . . . . . . . . 11 ((𝑎 = 𝐴𝑚 = 𝑁) → if(2 ∥ 𝑎, 0, if((𝑎 mod 8) ∈ {1, 7}, 1, -1)) = if(2 ∥ 𝐴, 0, if((𝐴 mod 8) ∈ {1, 7}, 1, -1)))
163oveq1d 7171 . . . . . . . . . . . . . 14 ((𝑎 = 𝐴𝑚 = 𝑁) → (𝑎↑((𝑛 − 1) / 2)) = (𝐴↑((𝑛 − 1) / 2)))
1716oveq1d 7171 . . . . . . . . . . . . 13 ((𝑎 = 𝐴𝑚 = 𝑁) → ((𝑎↑((𝑛 − 1) / 2)) + 1) = ((𝐴↑((𝑛 − 1) / 2)) + 1))
1817oveq1d 7171 . . . . . . . . . . . 12 ((𝑎 = 𝐴𝑚 = 𝑁) → (((𝑎↑((𝑛 − 1) / 2)) + 1) mod 𝑛) = (((𝐴↑((𝑛 − 1) / 2)) + 1) mod 𝑛))
1918oveq1d 7171 . . . . . . . . . . 11 ((𝑎 = 𝐴𝑚 = 𝑁) → ((((𝑎↑((𝑛 − 1) / 2)) + 1) mod 𝑛) − 1) = ((((𝐴↑((𝑛 − 1) / 2)) + 1) mod 𝑛) − 1))
2015, 19ifeq12d 4487 . . . . . . . . . 10 ((𝑎 = 𝐴𝑚 = 𝑁) → if(𝑛 = 2, if(2 ∥ 𝑎, 0, if((𝑎 mod 8) ∈ {1, 7}, 1, -1)), ((((𝑎↑((𝑛 − 1) / 2)) + 1) mod 𝑛) − 1)) = if(𝑛 = 2, if(2 ∥ 𝐴, 0, if((𝐴 mod 8) ∈ {1, 7}, 1, -1)), ((((𝐴↑((𝑛 − 1) / 2)) + 1) mod 𝑛) − 1)))
211oveq2d 7172 . . . . . . . . . 10 ((𝑎 = 𝐴𝑚 = 𝑁) → (𝑛 pCnt 𝑚) = (𝑛 pCnt 𝑁))
2220, 21oveq12d 7174 . . . . . . . . 9 ((𝑎 = 𝐴𝑚 = 𝑁) → (if(𝑛 = 2, if(2 ∥ 𝑎, 0, if((𝑎 mod 8) ∈ {1, 7}, 1, -1)), ((((𝑎↑((𝑛 − 1) / 2)) + 1) mod 𝑛) − 1))↑(𝑛 pCnt 𝑚)) = (if(𝑛 = 2, if(2 ∥ 𝐴, 0, if((𝐴 mod 8) ∈ {1, 7}, 1, -1)), ((((𝐴↑((𝑛 − 1) / 2)) + 1) mod 𝑛) − 1))↑(𝑛 pCnt 𝑁)))
2322ifeq1d 4485 . . . . . . . 8 ((𝑎 = 𝐴𝑚 = 𝑁) → if(𝑛 ∈ ℙ, (if(𝑛 = 2, if(2 ∥ 𝑎, 0, if((𝑎 mod 8) ∈ {1, 7}, 1, -1)), ((((𝑎↑((𝑛 − 1) / 2)) + 1) mod 𝑛) − 1))↑(𝑛 pCnt 𝑚)), 1) = if(𝑛 ∈ ℙ, (if(𝑛 = 2, if(2 ∥ 𝐴, 0, if((𝐴 mod 8) ∈ {1, 7}, 1, -1)), ((((𝐴↑((𝑛 − 1) / 2)) + 1) mod 𝑛) − 1))↑(𝑛 pCnt 𝑁)), 1))
2423mpteq2dv 5162 . . . . . . 7 ((𝑎 = 𝐴𝑚 = 𝑁) → (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, (if(𝑛 = 2, if(2 ∥ 𝑎, 0, if((𝑎 mod 8) ∈ {1, 7}, 1, -1)), ((((𝑎↑((𝑛 − 1) / 2)) + 1) mod 𝑛) − 1))↑(𝑛 pCnt 𝑚)), 1)) = (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, (if(𝑛 = 2, if(2 ∥ 𝐴, 0, if((𝐴 mod 8) ∈ {1, 7}, 1, -1)), ((((𝐴↑((𝑛 − 1) / 2)) + 1) mod 𝑛) − 1))↑(𝑛 pCnt 𝑁)), 1)))
25 lgsval.1 . . . . . . 7 𝐹 = (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, (if(𝑛 = 2, if(2 ∥ 𝐴, 0, if((𝐴 mod 8) ∈ {1, 7}, 1, -1)), ((((𝐴↑((𝑛 − 1) / 2)) + 1) mod 𝑛) − 1))↑(𝑛 pCnt 𝑁)), 1))
2624, 25syl6eqr 2874 . . . . . 6 ((𝑎 = 𝐴𝑚 = 𝑁) → (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, (if(𝑛 = 2, if(2 ∥ 𝑎, 0, if((𝑎 mod 8) ∈ {1, 7}, 1, -1)), ((((𝑎↑((𝑛 − 1) / 2)) + 1) mod 𝑛) − 1))↑(𝑛 pCnt 𝑚)), 1)) = 𝐹)
2726seqeq3d 13378 . . . . 5 ((𝑎 = 𝐴𝑚 = 𝑁) → seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, (if(𝑛 = 2, if(2 ∥ 𝑎, 0, if((𝑎 mod 8) ∈ {1, 7}, 1, -1)), ((((𝑎↑((𝑛 − 1) / 2)) + 1) mod 𝑛) − 1))↑(𝑛 pCnt 𝑚)), 1))) = seq1( · , 𝐹))
281fveq2d 6674 . . . . 5 ((𝑎 = 𝐴𝑚 = 𝑁) → (abs‘𝑚) = (abs‘𝑁))
2927, 28fveq12d 6677 . . . 4 ((𝑎 = 𝐴𝑚 = 𝑁) → (seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, (if(𝑛 = 2, if(2 ∥ 𝑎, 0, if((𝑎 mod 8) ∈ {1, 7}, 1, -1)), ((((𝑎↑((𝑛 − 1) / 2)) + 1) mod 𝑛) − 1))↑(𝑛 pCnt 𝑚)), 1)))‘(abs‘𝑚)) = (seq1( · , 𝐹)‘(abs‘𝑁)))
3010, 29oveq12d 7174 . . 3 ((𝑎 = 𝐴𝑚 = 𝑁) → (if((𝑚 < 0 ∧ 𝑎 < 0), -1, 1) · (seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, (if(𝑛 = 2, if(2 ∥ 𝑎, 0, if((𝑎 mod 8) ∈ {1, 7}, 1, -1)), ((((𝑎↑((𝑛 − 1) / 2)) + 1) mod 𝑛) − 1))↑(𝑛 pCnt 𝑚)), 1)))‘(abs‘𝑚))) = (if((𝑁 < 0 ∧ 𝐴 < 0), -1, 1) · (seq1( · , 𝐹)‘(abs‘𝑁))))
312, 6, 30ifbieq12d 4494 . 2 ((𝑎 = 𝐴𝑚 = 𝑁) → if(𝑚 = 0, if((𝑎↑2) = 1, 1, 0), (if((𝑚 < 0 ∧ 𝑎 < 0), -1, 1) · (seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, (if(𝑛 = 2, if(2 ∥ 𝑎, 0, if((𝑎 mod 8) ∈ {1, 7}, 1, -1)), ((((𝑎↑((𝑛 − 1) / 2)) + 1) mod 𝑛) − 1))↑(𝑛 pCnt 𝑚)), 1)))‘(abs‘𝑚)))) = if(𝑁 = 0, if((𝐴↑2) = 1, 1, 0), (if((𝑁 < 0 ∧ 𝐴 < 0), -1, 1) · (seq1( · , 𝐹)‘(abs‘𝑁)))))
32 df-lgs 25871 . 2 /L = (𝑎 ∈ ℤ, 𝑚 ∈ ℤ ↦ if(𝑚 = 0, if((𝑎↑2) = 1, 1, 0), (if((𝑚 < 0 ∧ 𝑎 < 0), -1, 1) · (seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, (if(𝑛 = 2, if(2 ∥ 𝑎, 0, if((𝑎 mod 8) ∈ {1, 7}, 1, -1)), ((((𝑎↑((𝑛 − 1) / 2)) + 1) mod 𝑛) − 1))↑(𝑛 pCnt 𝑚)), 1)))‘(abs‘𝑚)))))
33 1nn0 11914 . . . . 5 1 ∈ ℕ0
34 0nn0 11913 . . . . 5 0 ∈ ℕ0
3533, 34ifcli 4513 . . . 4 if((𝐴↑2) = 1, 1, 0) ∈ ℕ0
3635elexi 3513 . . 3 if((𝐴↑2) = 1, 1, 0) ∈ V
37 ovex 7189 . . 3 (if((𝑁 < 0 ∧ 𝐴 < 0), -1, 1) · (seq1( · , 𝐹)‘(abs‘𝑁))) ∈ V
3836, 37ifex 4515 . 2 if(𝑁 = 0, if((𝐴↑2) = 1, 1, 0), (if((𝑁 < 0 ∧ 𝐴 < 0), -1, 1) · (seq1( · , 𝐹)‘(abs‘𝑁)))) ∈ V
3931, 32, 38ovmpoa 7305 1 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐴 /L 𝑁) = if(𝑁 = 0, if((𝐴↑2) = 1, 1, 0), (if((𝑁 < 0 ∧ 𝐴 < 0), -1, 1) · (seq1( · , 𝐹)‘(abs‘𝑁)))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398   = wceq 1537  wcel 2114  ifcif 4467  {cpr 4569   class class class wbr 5066  cmpt 5146  cfv 6355  (class class class)co 7156  0cc0 10537  1c1 10538   + caddc 10540   · cmul 10542   < clt 10675  cmin 10870  -cneg 10871   / cdiv 11297  cn 11638  2c2 11693  7c7 11698  8c8 11699  0cn0 11898  cz 11982   mod cmo 13238  seqcseq 13370  cexp 13430  abscabs 14593  cdvds 15607  cprime 16015   pCnt cpc 16173   /L clgs 25870
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2793  ax-sep 5203  ax-nul 5210  ax-pow 5266  ax-pr 5330  ax-un 7461  ax-1cn 10595  ax-icn 10596  ax-addcl 10597  ax-mulcl 10599  ax-i2m1 10605
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-ral 3143  df-rex 3144  df-reu 3145  df-rab 3147  df-v 3496  df-sbc 3773  df-csb 3884  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-pss 3954  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4568  df-pr 4570  df-tp 4572  df-op 4574  df-uni 4839  df-iun 4921  df-br 5067  df-opab 5129  df-mpt 5147  df-tr 5173  df-id 5460  df-eprel 5465  df-po 5474  df-so 5475  df-fr 5514  df-we 5516  df-xp 5561  df-rel 5562  df-cnv 5563  df-co 5564  df-dm 5565  df-rn 5566  df-res 5567  df-ima 5568  df-pred 6148  df-ord 6194  df-on 6195  df-lim 6196  df-suc 6197  df-iota 6314  df-fun 6357  df-fn 6358  df-f 6359  df-f1 6360  df-fo 6361  df-f1o 6362  df-fv 6363  df-ov 7159  df-oprab 7160  df-mpo 7161  df-om 7581  df-wrecs 7947  df-recs 8008  df-rdg 8046  df-nn 11639  df-n0 11899  df-seq 13371  df-lgs 25871
This theorem is referenced by:  lgscllem  25880  lgsval2lem  25883  lgs0  25886  lgsval4  25893
  Copyright terms: Public domain W3C validator