MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lo1bdd Structured version   Visualization version   GIF version

Theorem lo1bdd 14201
Description: The defining property of an eventually upper bounded function. (Contributed by Mario Carneiro, 26-May-2016.)
Assertion
Ref Expression
lo1bdd ((𝐹 ∈ ≤𝑂(1) ∧ 𝐹:𝐴⟶ℝ) → ∃𝑥 ∈ ℝ ∃𝑚 ∈ ℝ ∀𝑦𝐴 (𝑥𝑦 → (𝐹𝑦) ≤ 𝑚))
Distinct variable groups:   𝑥,𝑚,𝑦,𝐴   𝑚,𝐹,𝑥,𝑦

Proof of Theorem lo1bdd
StepHypRef Expression
1 simpl 473 . 2 ((𝐹 ∈ ≤𝑂(1) ∧ 𝐹:𝐴⟶ℝ) → 𝐹 ∈ ≤𝑂(1))
2 simpr 477 . . 3 ((𝐹 ∈ ≤𝑂(1) ∧ 𝐹:𝐴⟶ℝ) → 𝐹:𝐴⟶ℝ)
3 fdm 6018 . . . . 5 (𝐹:𝐴⟶ℝ → dom 𝐹 = 𝐴)
43adantl 482 . . . 4 ((𝐹 ∈ ≤𝑂(1) ∧ 𝐹:𝐴⟶ℝ) → dom 𝐹 = 𝐴)
5 lo1dm 14200 . . . . 5 (𝐹 ∈ ≤𝑂(1) → dom 𝐹 ⊆ ℝ)
65adantr 481 . . . 4 ((𝐹 ∈ ≤𝑂(1) ∧ 𝐹:𝐴⟶ℝ) → dom 𝐹 ⊆ ℝ)
74, 6eqsstr3d 3625 . . 3 ((𝐹 ∈ ≤𝑂(1) ∧ 𝐹:𝐴⟶ℝ) → 𝐴 ⊆ ℝ)
8 ello12 14197 . . 3 ((𝐹:𝐴⟶ℝ ∧ 𝐴 ⊆ ℝ) → (𝐹 ∈ ≤𝑂(1) ↔ ∃𝑥 ∈ ℝ ∃𝑚 ∈ ℝ ∀𝑦𝐴 (𝑥𝑦 → (𝐹𝑦) ≤ 𝑚)))
92, 7, 8syl2anc 692 . 2 ((𝐹 ∈ ≤𝑂(1) ∧ 𝐹:𝐴⟶ℝ) → (𝐹 ∈ ≤𝑂(1) ↔ ∃𝑥 ∈ ℝ ∃𝑚 ∈ ℝ ∀𝑦𝐴 (𝑥𝑦 → (𝐹𝑦) ≤ 𝑚)))
101, 9mpbid 222 1 ((𝐹 ∈ ≤𝑂(1) ∧ 𝐹:𝐴⟶ℝ) → ∃𝑥 ∈ ℝ ∃𝑚 ∈ ℝ ∀𝑦𝐴 (𝑥𝑦 → (𝐹𝑦) ≤ 𝑚))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 384   = wceq 1480  wcel 1987  wral 2908  wrex 2909  wss 3560   class class class wbr 4623  dom cdm 5084  wf 5853  cfv 5857  cr 9895  cle 10035  ≤𝑂(1)clo1 14168
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-sep 4751  ax-nul 4759  ax-pow 4813  ax-pr 4877  ax-un 6914  ax-cnex 9952  ax-resscn 9953  ax-pre-lttri 9970  ax-pre-lttrn 9971
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-nel 2894  df-ral 2913  df-rex 2914  df-rab 2917  df-v 3192  df-sbc 3423  df-csb 3520  df-dif 3563  df-un 3565  df-in 3567  df-ss 3574  df-nul 3898  df-if 4065  df-pw 4138  df-sn 4156  df-pr 4158  df-op 4162  df-uni 4410  df-br 4624  df-opab 4684  df-mpt 4685  df-id 4999  df-po 5005  df-so 5006  df-xp 5090  df-rel 5091  df-cnv 5092  df-co 5093  df-dm 5094  df-rn 5095  df-res 5096  df-ima 5097  df-iota 5820  df-fun 5859  df-fn 5860  df-f 5861  df-f1 5862  df-fo 5863  df-f1o 5864  df-fv 5865  df-ov 6618  df-oprab 6619  df-mpt2 6620  df-er 7702  df-pm 7820  df-en 7916  df-dom 7917  df-sdom 7918  df-pnf 10036  df-mnf 10037  df-xr 10038  df-ltxr 10039  df-le 10040  df-ico 12139  df-lo1 14172
This theorem is referenced by:  lo1res  14240
  Copyright terms: Public domain W3C validator