![]() |
Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > mgmhmlin | Structured version Visualization version GIF version |
Description: A magma homomorphism preserves the binary operation. (Contributed by AV, 25-Feb-2020.) |
Ref | Expression |
---|---|
mgmhmlin.b | ⊢ 𝐵 = (Base‘𝑆) |
mgmhmlin.p | ⊢ + = (+g‘𝑆) |
mgmhmlin.q | ⊢ ⨣ = (+g‘𝑇) |
Ref | Expression |
---|---|
mgmhmlin | ⊢ ((𝐹 ∈ (𝑆 MgmHom 𝑇) ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝐹‘(𝑋 + 𝑌)) = ((𝐹‘𝑋) ⨣ (𝐹‘𝑌))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mgmhmlin.b | . . . 4 ⊢ 𝐵 = (Base‘𝑆) | |
2 | eqid 2760 | . . . 4 ⊢ (Base‘𝑇) = (Base‘𝑇) | |
3 | mgmhmlin.p | . . . 4 ⊢ + = (+g‘𝑆) | |
4 | mgmhmlin.q | . . . 4 ⊢ ⨣ = (+g‘𝑇) | |
5 | 1, 2, 3, 4 | ismgmhm 42311 | . . 3 ⊢ (𝐹 ∈ (𝑆 MgmHom 𝑇) ↔ ((𝑆 ∈ Mgm ∧ 𝑇 ∈ Mgm) ∧ (𝐹:𝐵⟶(Base‘𝑇) ∧ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝐹‘(𝑥 + 𝑦)) = ((𝐹‘𝑥) ⨣ (𝐹‘𝑦))))) |
6 | oveq1 6821 | . . . . . . . 8 ⊢ (𝑥 = 𝑋 → (𝑥 + 𝑦) = (𝑋 + 𝑦)) | |
7 | 6 | fveq2d 6357 | . . . . . . 7 ⊢ (𝑥 = 𝑋 → (𝐹‘(𝑥 + 𝑦)) = (𝐹‘(𝑋 + 𝑦))) |
8 | fveq2 6353 | . . . . . . . 8 ⊢ (𝑥 = 𝑋 → (𝐹‘𝑥) = (𝐹‘𝑋)) | |
9 | 8 | oveq1d 6829 | . . . . . . 7 ⊢ (𝑥 = 𝑋 → ((𝐹‘𝑥) ⨣ (𝐹‘𝑦)) = ((𝐹‘𝑋) ⨣ (𝐹‘𝑦))) |
10 | 7, 9 | eqeq12d 2775 | . . . . . 6 ⊢ (𝑥 = 𝑋 → ((𝐹‘(𝑥 + 𝑦)) = ((𝐹‘𝑥) ⨣ (𝐹‘𝑦)) ↔ (𝐹‘(𝑋 + 𝑦)) = ((𝐹‘𝑋) ⨣ (𝐹‘𝑦)))) |
11 | oveq2 6822 | . . . . . . . 8 ⊢ (𝑦 = 𝑌 → (𝑋 + 𝑦) = (𝑋 + 𝑌)) | |
12 | 11 | fveq2d 6357 | . . . . . . 7 ⊢ (𝑦 = 𝑌 → (𝐹‘(𝑋 + 𝑦)) = (𝐹‘(𝑋 + 𝑌))) |
13 | fveq2 6353 | . . . . . . . 8 ⊢ (𝑦 = 𝑌 → (𝐹‘𝑦) = (𝐹‘𝑌)) | |
14 | 13 | oveq2d 6830 | . . . . . . 7 ⊢ (𝑦 = 𝑌 → ((𝐹‘𝑋) ⨣ (𝐹‘𝑦)) = ((𝐹‘𝑋) ⨣ (𝐹‘𝑌))) |
15 | 12, 14 | eqeq12d 2775 | . . . . . 6 ⊢ (𝑦 = 𝑌 → ((𝐹‘(𝑋 + 𝑦)) = ((𝐹‘𝑋) ⨣ (𝐹‘𝑦)) ↔ (𝐹‘(𝑋 + 𝑌)) = ((𝐹‘𝑋) ⨣ (𝐹‘𝑌)))) |
16 | 10, 15 | rspc2v 3461 | . . . . 5 ⊢ ((𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝐹‘(𝑥 + 𝑦)) = ((𝐹‘𝑥) ⨣ (𝐹‘𝑦)) → (𝐹‘(𝑋 + 𝑌)) = ((𝐹‘𝑋) ⨣ (𝐹‘𝑌)))) |
17 | 16 | com12 32 | . . . 4 ⊢ (∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝐹‘(𝑥 + 𝑦)) = ((𝐹‘𝑥) ⨣ (𝐹‘𝑦)) → ((𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝐹‘(𝑋 + 𝑌)) = ((𝐹‘𝑋) ⨣ (𝐹‘𝑌)))) |
18 | 17 | ad2antll 767 | . . 3 ⊢ (((𝑆 ∈ Mgm ∧ 𝑇 ∈ Mgm) ∧ (𝐹:𝐵⟶(Base‘𝑇) ∧ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝐹‘(𝑥 + 𝑦)) = ((𝐹‘𝑥) ⨣ (𝐹‘𝑦)))) → ((𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝐹‘(𝑋 + 𝑌)) = ((𝐹‘𝑋) ⨣ (𝐹‘𝑌)))) |
19 | 5, 18 | sylbi 207 | . 2 ⊢ (𝐹 ∈ (𝑆 MgmHom 𝑇) → ((𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝐹‘(𝑋 + 𝑌)) = ((𝐹‘𝑋) ⨣ (𝐹‘𝑌)))) |
20 | 19 | 3impib 1109 | 1 ⊢ ((𝐹 ∈ (𝑆 MgmHom 𝑇) ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝐹‘(𝑋 + 𝑌)) = ((𝐹‘𝑋) ⨣ (𝐹‘𝑌))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 383 ∧ w3a 1072 = wceq 1632 ∈ wcel 2139 ∀wral 3050 ⟶wf 6045 ‘cfv 6049 (class class class)co 6814 Basecbs 16079 +gcplusg 16163 Mgmcmgm 17461 MgmHom cmgmhm 42305 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1871 ax-4 1886 ax-5 1988 ax-6 2054 ax-7 2090 ax-8 2141 ax-9 2148 ax-10 2168 ax-11 2183 ax-12 2196 ax-13 2391 ax-ext 2740 ax-sep 4933 ax-nul 4941 ax-pow 4992 ax-pr 5055 ax-un 7115 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3an 1074 df-tru 1635 df-ex 1854 df-nf 1859 df-sb 2047 df-eu 2611 df-mo 2612 df-clab 2747 df-cleq 2753 df-clel 2756 df-nfc 2891 df-ne 2933 df-ral 3055 df-rex 3056 df-rab 3059 df-v 3342 df-sbc 3577 df-dif 3718 df-un 3720 df-in 3722 df-ss 3729 df-nul 4059 df-if 4231 df-pw 4304 df-sn 4322 df-pr 4324 df-op 4328 df-uni 4589 df-br 4805 df-opab 4865 df-id 5174 df-xp 5272 df-rel 5273 df-cnv 5274 df-co 5275 df-dm 5276 df-rn 5277 df-iota 6012 df-fun 6051 df-fn 6052 df-f 6053 df-fv 6057 df-ov 6817 df-oprab 6818 df-mpt2 6819 df-map 8027 df-mgmhm 42307 |
This theorem is referenced by: mgmhmf1o 42315 resmgmhm 42326 resmgmhm2 42327 resmgmhm2b 42328 mgmhmco 42329 mgmhmima 42330 mgmhmeql 42331 |
Copyright terms: Public domain | W3C validator |