Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  resmgmhm2b Structured version   Visualization version   GIF version

Theorem resmgmhm2b 44152
Description: Restriction of the codomain of a homomorphism. (Contributed by AV, 26-Feb-2020.)
Hypothesis
Ref Expression
resmgmhm2.u 𝑈 = (𝑇s 𝑋)
Assertion
Ref Expression
resmgmhm2b ((𝑋 ∈ (SubMgm‘𝑇) ∧ ran 𝐹𝑋) → (𝐹 ∈ (𝑆 MgmHom 𝑇) ↔ 𝐹 ∈ (𝑆 MgmHom 𝑈)))

Proof of Theorem resmgmhm2b
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 mgmhmrcl 44133 . . . . . 6 (𝐹 ∈ (𝑆 MgmHom 𝑇) → (𝑆 ∈ Mgm ∧ 𝑇 ∈ Mgm))
21simpld 497 . . . . 5 (𝐹 ∈ (𝑆 MgmHom 𝑇) → 𝑆 ∈ Mgm)
32adantl 484 . . . 4 (((𝑋 ∈ (SubMgm‘𝑇) ∧ ran 𝐹𝑋) ∧ 𝐹 ∈ (𝑆 MgmHom 𝑇)) → 𝑆 ∈ Mgm)
4 resmgmhm2.u . . . . . 6 𝑈 = (𝑇s 𝑋)
54submgmmgm 44147 . . . . 5 (𝑋 ∈ (SubMgm‘𝑇) → 𝑈 ∈ Mgm)
65ad2antrr 724 . . . 4 (((𝑋 ∈ (SubMgm‘𝑇) ∧ ran 𝐹𝑋) ∧ 𝐹 ∈ (𝑆 MgmHom 𝑇)) → 𝑈 ∈ Mgm)
73, 6jca 514 . . 3 (((𝑋 ∈ (SubMgm‘𝑇) ∧ ran 𝐹𝑋) ∧ 𝐹 ∈ (𝑆 MgmHom 𝑇)) → (𝑆 ∈ Mgm ∧ 𝑈 ∈ Mgm))
8 eqid 2821 . . . . . . . . 9 (Base‘𝑆) = (Base‘𝑆)
9 eqid 2821 . . . . . . . . 9 (Base‘𝑇) = (Base‘𝑇)
108, 9mgmhmf 44136 . . . . . . . 8 (𝐹 ∈ (𝑆 MgmHom 𝑇) → 𝐹:(Base‘𝑆)⟶(Base‘𝑇))
1110adantl 484 . . . . . . 7 (((𝑋 ∈ (SubMgm‘𝑇) ∧ ran 𝐹𝑋) ∧ 𝐹 ∈ (𝑆 MgmHom 𝑇)) → 𝐹:(Base‘𝑆)⟶(Base‘𝑇))
1211ffnd 6501 . . . . . 6 (((𝑋 ∈ (SubMgm‘𝑇) ∧ ran 𝐹𝑋) ∧ 𝐹 ∈ (𝑆 MgmHom 𝑇)) → 𝐹 Fn (Base‘𝑆))
13 simplr 767 . . . . . 6 (((𝑋 ∈ (SubMgm‘𝑇) ∧ ran 𝐹𝑋) ∧ 𝐹 ∈ (𝑆 MgmHom 𝑇)) → ran 𝐹𝑋)
14 df-f 6345 . . . . . 6 (𝐹:(Base‘𝑆)⟶𝑋 ↔ (𝐹 Fn (Base‘𝑆) ∧ ran 𝐹𝑋))
1512, 13, 14sylanbrc 585 . . . . 5 (((𝑋 ∈ (SubMgm‘𝑇) ∧ ran 𝐹𝑋) ∧ 𝐹 ∈ (𝑆 MgmHom 𝑇)) → 𝐹:(Base‘𝑆)⟶𝑋)
164submgmbas 44148 . . . . . . 7 (𝑋 ∈ (SubMgm‘𝑇) → 𝑋 = (Base‘𝑈))
1716ad2antrr 724 . . . . . 6 (((𝑋 ∈ (SubMgm‘𝑇) ∧ ran 𝐹𝑋) ∧ 𝐹 ∈ (𝑆 MgmHom 𝑇)) → 𝑋 = (Base‘𝑈))
1817feq3d 6487 . . . . 5 (((𝑋 ∈ (SubMgm‘𝑇) ∧ ran 𝐹𝑋) ∧ 𝐹 ∈ (𝑆 MgmHom 𝑇)) → (𝐹:(Base‘𝑆)⟶𝑋𝐹:(Base‘𝑆)⟶(Base‘𝑈)))
1915, 18mpbid 234 . . . 4 (((𝑋 ∈ (SubMgm‘𝑇) ∧ ran 𝐹𝑋) ∧ 𝐹 ∈ (𝑆 MgmHom 𝑇)) → 𝐹:(Base‘𝑆)⟶(Base‘𝑈))
20 eqid 2821 . . . . . . . . 9 (+g𝑆) = (+g𝑆)
21 eqid 2821 . . . . . . . . 9 (+g𝑇) = (+g𝑇)
228, 20, 21mgmhmlin 44138 . . . . . . . 8 ((𝐹 ∈ (𝑆 MgmHom 𝑇) ∧ 𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ (Base‘𝑆)) → (𝐹‘(𝑥(+g𝑆)𝑦)) = ((𝐹𝑥)(+g𝑇)(𝐹𝑦)))
23223expb 1116 . . . . . . 7 ((𝐹 ∈ (𝑆 MgmHom 𝑇) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ (Base‘𝑆))) → (𝐹‘(𝑥(+g𝑆)𝑦)) = ((𝐹𝑥)(+g𝑇)(𝐹𝑦)))
2423adantll 712 . . . . . 6 ((((𝑋 ∈ (SubMgm‘𝑇) ∧ ran 𝐹𝑋) ∧ 𝐹 ∈ (𝑆 MgmHom 𝑇)) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ (Base‘𝑆))) → (𝐹‘(𝑥(+g𝑆)𝑦)) = ((𝐹𝑥)(+g𝑇)(𝐹𝑦)))
254, 21ressplusg 16595 . . . . . . . 8 (𝑋 ∈ (SubMgm‘𝑇) → (+g𝑇) = (+g𝑈))
2625ad3antrrr 728 . . . . . . 7 ((((𝑋 ∈ (SubMgm‘𝑇) ∧ ran 𝐹𝑋) ∧ 𝐹 ∈ (𝑆 MgmHom 𝑇)) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ (Base‘𝑆))) → (+g𝑇) = (+g𝑈))
2726oveqd 7159 . . . . . 6 ((((𝑋 ∈ (SubMgm‘𝑇) ∧ ran 𝐹𝑋) ∧ 𝐹 ∈ (𝑆 MgmHom 𝑇)) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ (Base‘𝑆))) → ((𝐹𝑥)(+g𝑇)(𝐹𝑦)) = ((𝐹𝑥)(+g𝑈)(𝐹𝑦)))
2824, 27eqtrd 2856 . . . . 5 ((((𝑋 ∈ (SubMgm‘𝑇) ∧ ran 𝐹𝑋) ∧ 𝐹 ∈ (𝑆 MgmHom 𝑇)) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ (Base‘𝑆))) → (𝐹‘(𝑥(+g𝑆)𝑦)) = ((𝐹𝑥)(+g𝑈)(𝐹𝑦)))
2928ralrimivva 3191 . . . 4 (((𝑋 ∈ (SubMgm‘𝑇) ∧ ran 𝐹𝑋) ∧ 𝐹 ∈ (𝑆 MgmHom 𝑇)) → ∀𝑥 ∈ (Base‘𝑆)∀𝑦 ∈ (Base‘𝑆)(𝐹‘(𝑥(+g𝑆)𝑦)) = ((𝐹𝑥)(+g𝑈)(𝐹𝑦)))
3019, 29jca 514 . . 3 (((𝑋 ∈ (SubMgm‘𝑇) ∧ ran 𝐹𝑋) ∧ 𝐹 ∈ (𝑆 MgmHom 𝑇)) → (𝐹:(Base‘𝑆)⟶(Base‘𝑈) ∧ ∀𝑥 ∈ (Base‘𝑆)∀𝑦 ∈ (Base‘𝑆)(𝐹‘(𝑥(+g𝑆)𝑦)) = ((𝐹𝑥)(+g𝑈)(𝐹𝑦))))
31 eqid 2821 . . . 4 (Base‘𝑈) = (Base‘𝑈)
32 eqid 2821 . . . 4 (+g𝑈) = (+g𝑈)
338, 31, 20, 32ismgmhm 44135 . . 3 (𝐹 ∈ (𝑆 MgmHom 𝑈) ↔ ((𝑆 ∈ Mgm ∧ 𝑈 ∈ Mgm) ∧ (𝐹:(Base‘𝑆)⟶(Base‘𝑈) ∧ ∀𝑥 ∈ (Base‘𝑆)∀𝑦 ∈ (Base‘𝑆)(𝐹‘(𝑥(+g𝑆)𝑦)) = ((𝐹𝑥)(+g𝑈)(𝐹𝑦)))))
347, 30, 33sylanbrc 585 . 2 (((𝑋 ∈ (SubMgm‘𝑇) ∧ ran 𝐹𝑋) ∧ 𝐹 ∈ (𝑆 MgmHom 𝑇)) → 𝐹 ∈ (𝑆 MgmHom 𝑈))
354resmgmhm2 44151 . . . 4 ((𝐹 ∈ (𝑆 MgmHom 𝑈) ∧ 𝑋 ∈ (SubMgm‘𝑇)) → 𝐹 ∈ (𝑆 MgmHom 𝑇))
3635ancoms 461 . . 3 ((𝑋 ∈ (SubMgm‘𝑇) ∧ 𝐹 ∈ (𝑆 MgmHom 𝑈)) → 𝐹 ∈ (𝑆 MgmHom 𝑇))
3736adantlr 713 . 2 (((𝑋 ∈ (SubMgm‘𝑇) ∧ ran 𝐹𝑋) ∧ 𝐹 ∈ (𝑆 MgmHom 𝑈)) → 𝐹 ∈ (𝑆 MgmHom 𝑇))
3834, 37impbida 799 1 ((𝑋 ∈ (SubMgm‘𝑇) ∧ ran 𝐹𝑋) → (𝐹 ∈ (𝑆 MgmHom 𝑇) ↔ 𝐹 ∈ (𝑆 MgmHom 𝑈)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398   = wceq 1537  wcel 2114  wral 3138  wss 3924  ran crn 5542   Fn wfn 6336  wf 6337  cfv 6341  (class class class)co 7142  Basecbs 16466  s cress 16467  +gcplusg 16548  Mgmcmgm 17833   MgmHom cmgmhm 44129  SubMgmcsubmgm 44130
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2793  ax-sep 5189  ax-nul 5196  ax-pow 5252  ax-pr 5316  ax-un 7447  ax-cnex 10579  ax-resscn 10580  ax-1cn 10581  ax-icn 10582  ax-addcl 10583  ax-addrcl 10584  ax-mulcl 10585  ax-mulrcl 10586  ax-mulcom 10587  ax-addass 10588  ax-mulass 10589  ax-distr 10590  ax-i2m1 10591  ax-1ne0 10592  ax-1rid 10593  ax-rnegex 10594  ax-rrecex 10595  ax-cnre 10596  ax-pre-lttri 10597  ax-pre-lttrn 10598  ax-pre-ltadd 10599  ax-pre-mulgt0 10600
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rab 3147  df-v 3488  df-sbc 3764  df-csb 3872  df-dif 3927  df-un 3929  df-in 3931  df-ss 3940  df-pss 3942  df-nul 4280  df-if 4454  df-pw 4527  df-sn 4554  df-pr 4556  df-tp 4558  df-op 4560  df-uni 4825  df-iun 4907  df-br 5053  df-opab 5115  df-mpt 5133  df-tr 5159  df-id 5446  df-eprel 5451  df-po 5460  df-so 5461  df-fr 5500  df-we 5502  df-xp 5547  df-rel 5548  df-cnv 5549  df-co 5550  df-dm 5551  df-rn 5552  df-res 5553  df-ima 5554  df-pred 6134  df-ord 6180  df-on 6181  df-lim 6182  df-suc 6183  df-iota 6300  df-fun 6343  df-fn 6344  df-f 6345  df-f1 6346  df-fo 6347  df-f1o 6348  df-fv 6349  df-riota 7100  df-ov 7145  df-oprab 7146  df-mpo 7147  df-om 7567  df-wrecs 7933  df-recs 7994  df-rdg 8032  df-er 8275  df-map 8394  df-en 8496  df-dom 8497  df-sdom 8498  df-pnf 10663  df-mnf 10664  df-xr 10665  df-ltxr 10666  df-le 10667  df-sub 10858  df-neg 10859  df-nn 11625  df-2 11687  df-ndx 16469  df-slot 16470  df-base 16472  df-sets 16473  df-ress 16474  df-plusg 16561  df-mgm 17835  df-mgmhm 44131  df-submgm 44132
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator