MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mirne Structured version   Visualization version   GIF version

Theorem mirne 26455
Description: Mirror of non-center point cannot be the center point. (Contributed by Thierry Arnoux, 27-Sep-2020.)
Hypotheses
Ref Expression
mirval.p 𝑃 = (Base‘𝐺)
mirval.d = (dist‘𝐺)
mirval.i 𝐼 = (Itv‘𝐺)
mirval.l 𝐿 = (LineG‘𝐺)
mirval.s 𝑆 = (pInvG‘𝐺)
mirval.g (𝜑𝐺 ∈ TarskiG)
mirval.a (𝜑𝐴𝑃)
mirfv.m 𝑀 = (𝑆𝐴)
mirinv.b (𝜑𝐵𝑃)
mirne.1 (𝜑𝐵𝐴)
Assertion
Ref Expression
mirne (𝜑 → (𝑀𝐵) ≠ 𝐴)

Proof of Theorem mirne
StepHypRef Expression
1 simpr 487 . . . . 5 ((𝜑 ∧ (𝑀𝐵) = 𝐴) → (𝑀𝐵) = 𝐴)
21fveq2d 6676 . . . 4 ((𝜑 ∧ (𝑀𝐵) = 𝐴) → (𝑀‘(𝑀𝐵)) = (𝑀𝐴))
3 mirval.p . . . . . 6 𝑃 = (Base‘𝐺)
4 mirval.d . . . . . 6 = (dist‘𝐺)
5 mirval.i . . . . . 6 𝐼 = (Itv‘𝐺)
6 mirval.l . . . . . 6 𝐿 = (LineG‘𝐺)
7 mirval.s . . . . . 6 𝑆 = (pInvG‘𝐺)
8 mirval.g . . . . . 6 (𝜑𝐺 ∈ TarskiG)
9 mirval.a . . . . . 6 (𝜑𝐴𝑃)
10 mirfv.m . . . . . 6 𝑀 = (𝑆𝐴)
11 mirinv.b . . . . . 6 (𝜑𝐵𝑃)
123, 4, 5, 6, 7, 8, 9, 10, 11mirmir 26450 . . . . 5 (𝜑 → (𝑀‘(𝑀𝐵)) = 𝐵)
1312adantr 483 . . . 4 ((𝜑 ∧ (𝑀𝐵) = 𝐴) → (𝑀‘(𝑀𝐵)) = 𝐵)
14 eqid 2823 . . . . . 6 𝐴 = 𝐴
153, 4, 5, 6, 7, 8, 9, 10, 9mirinv 26454 . . . . . 6 (𝜑 → ((𝑀𝐴) = 𝐴𝐴 = 𝐴))
1614, 15mpbiri 260 . . . . 5 (𝜑 → (𝑀𝐴) = 𝐴)
1716adantr 483 . . . 4 ((𝜑 ∧ (𝑀𝐵) = 𝐴) → (𝑀𝐴) = 𝐴)
182, 13, 173eqtr3d 2866 . . 3 ((𝜑 ∧ (𝑀𝐵) = 𝐴) → 𝐵 = 𝐴)
19 mirne.1 . . . . 5 (𝜑𝐵𝐴)
2019adantr 483 . . . 4 ((𝜑 ∧ (𝑀𝐵) = 𝐴) → 𝐵𝐴)
2120neneqd 3023 . . 3 ((𝜑 ∧ (𝑀𝐵) = 𝐴) → ¬ 𝐵 = 𝐴)
2218, 21pm2.65da 815 . 2 (𝜑 → ¬ (𝑀𝐵) = 𝐴)
2322neqned 3025 1 (𝜑 → (𝑀𝐵) ≠ 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398   = wceq 1537  wcel 2114  wne 3018  cfv 6357  Basecbs 16485  distcds 16576  TarskiGcstrkg 26218  Itvcitv 26224  LineGclng 26225  pInvGcmir 26440
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2795  ax-rep 5192  ax-sep 5205  ax-nul 5212  ax-pr 5332
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2802  df-cleq 2816  df-clel 2895  df-nfc 2965  df-ne 3019  df-ral 3145  df-rex 3146  df-reu 3147  df-rmo 3148  df-rab 3149  df-v 3498  df-sbc 3775  df-csb 3886  df-dif 3941  df-un 3943  df-in 3945  df-ss 3954  df-nul 4294  df-if 4470  df-pw 4543  df-sn 4570  df-pr 4572  df-op 4576  df-uni 4841  df-iun 4923  df-br 5069  df-opab 5131  df-mpt 5149  df-id 5462  df-xp 5563  df-rel 5564  df-cnv 5565  df-co 5566  df-dm 5567  df-rn 5568  df-res 5569  df-ima 5570  df-iota 6316  df-fun 6359  df-fn 6360  df-f 6361  df-f1 6362  df-fo 6363  df-f1o 6364  df-fv 6365  df-riota 7116  df-ov 7161  df-trkgc 26236  df-trkgb 26237  df-trkgcb 26238  df-trkg 26241  df-mir 26441
This theorem is referenced by:  mirhl2  26469  sacgr  26619
  Copyright terms: Public domain W3C validator